首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The strictly anaerobic homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides differ with respect to their energy metabolism. Since growth as well as acetate and ATP formation of A. woodii is strictly dependent on Na+, but that of S. sphaeroides is not, the question arose whether these organisms also use different coupling ions for mechanical work, i.e. flagellar rotation. During growth on fructose in the presence of Na+ (50 mM), cells of A. woodii were vigorously motile, as judged by light microscopy. At low Na+ concentrations (0.3 mM), the growth rate decreased by only 15%, but the cells were completely non-motile. Addition of Na+ to such cultures restored motility instantaneously. Motility, as determined in swarm agar tubes, was strictly dependent on Na+; Li+, but not K+ partly substituted for Na+. Of the amilorides tested, phenamil proved to be a specific inhibitor of the flagellar motor of A. woodii. Growth and motility of S. sphaeroides was neither dependent on Na+ nor inhibited by amiloride derivatives. These results indicate that flagellar rotation is driven by ΔμNa + in A. woodii, but by ΔμH + in S. sphaeroides. Received: 30 May 1995 / Accepted: 31 August 1995  相似文献   

2.
During growth of Acetobacterium woodii on fructose, glucose or lactate in a medium containing less than 0.04% bicarbonate, molecular hydrogen was evolved up to 0.1 mol per mol of substrate. Under an H2-atmosphere growth of A. woodii with organic substrates was completely inhibited whereas under an H2/CO2-atmosphere rapid growth occurred. Under these conditions H2+CO2 and the organic substrate were utilized simultaneously indicating that A. woodii was able to grow mixotrophically. Clostridium aceticum differed from A. woodii in that H2 was only evolved in the stationary phase, that the inhibition by H2 was observed at pH 8.5 but not at pH 7.5, anf that in the presence of fructose and H2+CO2 only fructose was utilized.The hydrogenase activity of fructose-grown cells of C. aceticum amounted to only 12% of that of H2+CO2-grown cells. With A. woodii a corresponding decrease of the activity of this enzyme was not observed.  相似文献   

3.
4.
Acetogenic bacteria such as Acetobacterium woodii use the Wood–Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2. Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate-specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760-Awo_c22740) as the methanol-specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron source and the respiratory Rnf complex is required for redox homeostasis if methanol + CO2 is the substrate. Resting cells fed with methanol + CO2, indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities.  相似文献   

5.
In a mineral medium containing sulfate, the sulfate-reducing bacteriumDesulfovibrio sp. strain JJ degraded 1 mol of fructose stoichiometrically to 1 mol of H2S, 2 mol of acetate, and presumably 2 mol of CO2. The doubling time was 10 h, and the yield was 41.6 g dry weight/mol fructose degraded. In the absence of sulfate, the hydrogenophilic methanogenMethanospirillum hungatei replaced sulfate as hydrogen sink. In such cocultures, 1 mol of fructose was converted to acetate, methane, succinate, and presumably CO2 in varying concentrations. The growth yield of the H2-transferring association was 33 g dry weight/mol fructose. In the absence of sulfate,Desulfovibrio strain JJ slowly fermented 1 mol of fructose to 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol. The results are compared with those of other anaerobic hexose-degrading bacteria.  相似文献   

6.
《Genomics》2019,111(6):1687-1694
Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions.  相似文献   

7.
Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.  相似文献   

8.
Methanosarcina barkeri (strain MS) grew and converted acetate to CO2 and methane after an adaption period of 20 days. Growth and metabolism were rapid with gas production being comparable to that of cells grown on H2 and CO2. After an intermediary growth cycle under a H2 and CO2 atmosphere acetateadapted cells were capable of growth on acetate with formation of methane and CO2. When acetate-adapted Methanosarcina barkeri was co-cultered with Acetobacterium woodii on fructose or glucose as substrate, a complete conversion of the carbohydrate to gases (CO2 and CH4) was observed.Abbreviation CMC carboxymethyl cellulose  相似文献   

9.
Acidaminococcus fermentans is able to ferment glutamate to ammonia, CO2, acetate, butyrate, and H2. The molecular hydrogen (approximately 10 kPa; E′ = –385 mV) stems from NADH generated in the 3-hydroxybutyryl-CoA dehydrogenase reaction (E°′ = –240 mV) of the hydroxyglutarate pathway. In contrast to growing cells, which require at least 5 mM Na+, a Na+-dependence of the H2-formation was observed with washed cells. Whereas the optimal glutamate fermentation rate was achieved already at 1 mM Na+, H2 formation commenced only at > 10 mM Na+ and reached maximum rates at 100 mM Na+. The acetate/butyrate ratio thereby increased from 2.0 at 1 mM Na+ to 3.0 at 100 mM Na+. A hydrogenase and an NADH dehydrogenase, both of which were detected in membrane fractions, are components of a model in which electrons, generated by NADH oxidation inside of the cytoplasmic membrane, reduce protons outside of the cytoplasmic membrane. The entire process can be driven by decarboxylation of glutaconyl-CoA, which consumes the protons released by NADH oxidation inside the cell. Hydrogen production commences exactly at those Na+ concentrations at which the electrogenic H+/Na+-antiporter glutaconyl-CoA decarboxylase is converted into a Na+/Na+ exchanger. Received: 3 May 1996 / Accepted: 12 August 1996  相似文献   

10.
Cultures of Acetobacterium woodii and Clostridium thermoaceticum growing on fructose or glucose, respectively, were found to produce small, but significant amounts of carbon monoxide. In the gas phase of the cultures up to 53 ppm CO were determined. The carbon monoxide production was completely inhibited by 1 mM cyanide. Cultures and cell suspensions of both acetogens incorporated 14CO specifically into the carboxyl group of acetate. This CO fixation into C1 of acetate was unaffected by cyanide (1 mM). The findings are taken to indicate that CO (in a bound form) is the physiological precursor of the C1 of acetate in acetate synthesis from CO2. The cyanide inhibition experiments support the hypothesis that the cyanide-sensitive carbon monoxide dehydrogenase may serve to reduce CO2 to CO rather than to incorporate the carbonyl into C1 of acetate.  相似文献   

11.
Summary Two newly isolated strains of Methanosarcina, strains JKAD and DALS, were grown in monoculture and in mixed culture in combination with Acetobacterium woodii WB1. Methanosarcina strains convert acetate into methane and carbon dioxide while Acetobacterium woodii grows on fructose, producing acetate via homoacetate fermentation. Monocultures of A. woodii in continuous culture consumed up to 6 mmoles g-1 dry weight (dw) h-1 of fructose and produced up to 12.9 mmoles g-1 dw h-1 of acetate at a dilution rate (D) of 0.13 h-1. In batch growth the methanogenic bacteria produced up to 12.1 mmoles g-1 dw h-1 of CH4 at a specific growth rate of 0.043 h-1. In continuous cultivation the specific growth rate and the specific methane production of Methanosarcina were lower than in batch cultures, with values of 0.031 h-1 and 3.1 mmoles g-1 dw h-1 of methane, respectively. In combination, A. woodii and Methanosarcina strain DALS in batch cultures completely converted fructose to methane and carbon dioxide with a maximum specific methane production rate of 1.9 mmoles g-1 dw h-1 of methane. In continuous cultivation these mixed cultures produced between 1.2 and 2 mmoles g-1 dw h-1 of CH4 at a dilution rate of up to 0.043 h-1. The methanogens were washed out at D values higher than 0.043 h-1 for A. woodii and Methanosarcina strain JKAD, and higher than 0.05 h-1 for A. woodii and Methanosarcina strain DALS. Data obtained from defined mixed cultures allow one to follow interactions in a mixed population of two species with different growth constants.  相似文献   

12.

Background

Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2 + CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui.

Results

The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G + C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2 + CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech).

Conclusions

The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2 + CO2 make T.kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.  相似文献   

13.
Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood–Ljungdahl pathway (WLP) of acetogenesis from H2 + CO2. Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2 + CO2. Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2 + CO2 nor H2 + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. Blautia luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2 + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2 + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome.  相似文献   

14.
Cell extracts of a nonsporeforming strictly anaerobic bacterium, Acetobacterium woodii produced acetate in N-tris(Hydroxymethyl)methyl-2-aminoethane sulfonic acid or phosphate buffers from hydrogen and carbon dioxide. The formation of acetate was not dependent on the presence of ATP in the reaction mixture; ADP also did not influence the acetate production. Since acetic acid is the main fermentation product during growth of A. woodii with H2 and CO2, ATP must be synthesized in the course of acetate formation. The possible sites of ATP synthesis are discussed.  相似文献   

15.
16.
Growth yields were determined with Acetobacterium woodii strain NZva 16 on hydrogen and CO2, formate, methanol, vanillate, ferulate and fructose in mineral medium in the absence and presence of 0.05% yeast extract. Yeast extract was not essential for growth but enhanced growth yields by 25–100% depending on the substrate fermented. Comparison of yields on formate or methanol allowed calculation of an energy yield in the range of 1.5–2 mol ATP per mol acetate formed during homoacetate fermentation of A. woodii. In the presence of 6 mM caffeate, growth yields were determined with the substrates formate or methanol. Caffeate was reduced to hydrocaffeate and increased growth yields were obtained. An ATP yield of about 1 mol per mol of caffeate reduced was calculated. Cytochromes were not detectable in cell free extracts or membrane preparations.  相似文献   

17.
When Acetobacterium woodii was co-cultured in continuous or in stationary culture with Methanobacterium strain AZ, fructose instead of being converted to 3 mol of acetate was converted to 2 mol of acetate and 1 mol each of carbon dioxide and methane, showing that interspecies hydrogen transfer occurred. In continous culture the organisms formed a close physical association in clumps; the doubling time for each organism was 6h at 33°C. Methane mainly was derived from carbon positions 3 and 4 of the sugar, but other carbons also yielded methane; this was shown to be due to carbon dioxide-acetate exchange reactions by A. woodii in a manner similar to that carried out by Clostridium thermoaceticum. Four other methanogens, Methanobacterium M.o.H. and M.o.H. G, Methanobacterium formicicum, and Methanosarcina barkeri (not acetate-adapted) also produced similar results, when co-cultured with A. woodii.  相似文献   

18.
Fructose and H2 were compared as electron donors for hydrogenation of carbon-carbon double bonds using Acetobacterium woodii. Caffeate was used as a model substrate. An electron donor was required and both fructose and H2 were suitable. With fructose as the donor, the K s for caffeate was 0.5 mM and the V max was 678 mmol kgdry weight −1 h−1.␣Fructose oxidation was coupled very efficiently to caffeate reduction by an alteration in the fructose fermentation so that acetate was no longer produced. Received: 24 June 1996 / Accepted: 1 July 1996  相似文献   

19.
The Na+ F1FO ATP synthase of the anaerobic, acetogenic bacterium Acetobacterium woodii has a unique FOVO hybrid rotor that contains nine copies of a FO-like c subunit and one copy of a VO-like c 1 subunit with one ion binding site in four transmembrane helices whose cellular function is obscure. Since a genetic system to address the role of different c subunits is not available for this bacterium, we aimed at a heterologous expression system. Therefore, we cloned and expressed its Na+ F1FO ATP synthase operon in Escherichia coli. A Δatp mutant of E. coli produced a functional, membrane-bound Na+ F1FO ATP synthase that was purified in a single step after inserting a His6-tag to its β subunit. The purified enzyme was competent in Na+ transport and contained the FOVO hybrid rotor in the same stoichiometry as in A. woodii. Deletion of the atpI gene from the A. woodii operon resulted in a loss of the c ring and a mis-assembled Na+ F1FO ATP synthase. AtpI from E. coli could not substitute AtpI from A. woodii. These data demonstrate for the first time a functional production of a FOVO hybrid rotor in E. coli and revealed that the native AtpI is required for assembly of the hybrid rotor.  相似文献   

20.
Carbon dioxide-fixing acetogenic bacteria (acetogens) utilizing the Wood-Ljungdahl Pathway (WLP) play an important role in CO2 fixation in the biosphere and in the development of biological processes – alone or in cocultures, under both autotrophic and mixotrophic conditions – for production of chemicals and fuels. To date, limited work has been reported in experimentally validating and quantifying reaction fluxes of their core metabolic pathways. Here, the core metabolic model of the acetogen Clostridium ljungdahlii was interrogated using 13C-metabolic flux analysis (13C-MFA), which required the development of a new defined culture medium. Autotrophic, heterotrophic, and mixotrophic growth in defined medium was possible by adding 1 mM methionine to replace yeast extract. Our 13C-MFA found an incomplete TCA cycle and inactive core pathways/reactions, notably those of the oxidative pentose phosphate pathway, Entner-Doudoroff pathway, and malate dehydrogenase. 13C-MFA during mixotrophic growth using the parallel tracers [1–13C]fructose, [1,2–13C]fructose, [1,2,3–13C]fructose, and [U–13C]asparagine found that externally supplied CO2 contributed the majority of carbon consumed. All internally-produced CO2 from the catabolism of asparagine and fructose was consumed by the WLP. While glycolysis of fructose was active, it was not a major contributor to overall production of ATP, NADH, and acetyl-CoA. Gluconeogenic reactions were active despite the availability of organic carbon. Asparagine was catabolized equally via conversion to threonine and subsequent cleavage to produce acetaldehyde and glycine, and via deamination to fumarate and then the anaplerotic conversion of malate to pyruvate. Both pathways for asparagine catabolism produced acetyl-CoA, either directly via pyruvate or indirectly via the WLP. Cofactor stoichiometry based on our data predicted an essentially zero flux through the ferredoxin-dependent transhydrogenase (Nfn) reaction. Instead, nearly all of NADPH generated from the hydrogenase reaction was consumed by the WLP. Reduced ferredoxin produced by the hydrogenase reaction and glycolysis was mostly used for ATP generation via the RNF/ATPase system, with the remainder consumed by the WLP. NADH produced by RNF/ATPase was entirely consumed via the WLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号