首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is expected to favour infectious diseases across ecosystems worldwide. In freshwater and marine environments, parasites play a crucial role in controlling plankton population dynamics. Infection of phytoplankton populations will cause a transfer of carbon and nutrients into parasites, which may change the type of food available for higher trophic levels. Some phytoplankton species are inedible to zooplankton, and the termination of their population by parasites may liberate otherwise unavailable carbon and nutrients. Phytoplankton spring blooms often consist of large diatoms inedible for zooplankton, but the zoospores of their fungal parasites may serve as a food source for this higher trophic level. Here, we investigated the impact of warming on the fungal infection of a natural phytoplankton spring bloom and followed the response of a zooplankton community. Experiments were performed in ca. 1000 L indoor mesocosms exposed to a controlled seasonal temperature cycle and a warm (+4 °C) treatment in the period from March to June 2014. The spring bloom was dominated by the diatom Synedra. At the peak of infection over 40% of the Synedra population was infected by a fungal parasite (i.e. a chytrid) in both treatments. Warming did not affect the onset of the Synedra bloom, but accelerated its termination. Peak population density of Synedra tended to be lower in the warm treatments. Furthermore, Synedra carbon: phosphorus stoichiometry increased during the bloom, particularly in the control treatments. This indicates enhanced phosphorus limitation in the control treatments, which may have constrained chytrid development. Timing of the rotifer Keratella advanced in the warm treatments and closely followed chytrid infections. The chytrids' zoospores may thus have served as an alternative food source to Keratella. Our study thus emphasizes the importance of incorporating not only nutrient limitation and grazing, but also parasitism in understanding the response of plankton communities towards global warming.  相似文献   

2.
Lindén  Eveliina  Kuosa  Harri 《Hydrobiologia》2004,514(1-3):73-78

The aim of this study was to determine the effects of pelagic mysids (Mysis mixta and M. relicta) on the biomass and size-structure of the phytoplankton community during the period following the spring bloom. Mysids excreted phosphate (4.5 ± 0.7 nmol ind−1 h−1) and ammonium (123.6 ± 31.6 and 45.0 ± 3.2 nmol ind−1 h−1) and increased the total chlorophyll-a concentration of phytoplankton slightly. However, the presence of mysids affected different size-classes of phytoplankton differently. Mysids mainly grazed on large-sized (>10 μm) phytoplankton cells. Small-sized (<10 μm) algal cells avoided grazing, gained a competitive advantage and were able to utilize the nutrients excreted by mysids. According to this study, both top-down and bottom-up mechanisms simultaneously mould the structure of the phytoplankton community. A large zooplankton biomass might promote the increase of small flagellates by a combination of repleting nutrient stores, selective grazing on large algal cells and heavy predation on protozoa which, consequently, might have a cascading effect on the most favoured protozoan food source, small flagellates.

  相似文献   

3.
4.
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.  相似文献   

5.
Identifying resilience mechanisms to recurrent ecosystem perturbations   总被引:1,自引:0,他引:1  
The complex nature of ecological systems limits the unambiguous determination of mechanisms that drive resilience to natural disturbance or anthropogenic stress. Using eight-year time series data from boreal lakes with and without bloom formation of an invasive alga (Gonyostomum semen, Raphidophyceae), we studied resilience of phytoplankton communities in relation to recurring bloom impacts. We first characterized phytoplankton community dynamics in both lake types using univariate metrics of community structure (evenness, species richness, biovolume and Simpson diversity). All metrics, except species richness, were substantially altered and showed an inherent stronger variability in bloom lakes relative to reference lakes. We assessed resilience mechanisms using a multivariate time series modelling technique. The models captured clear successional dynamics of the phytoplankton communities in all lakes, whereby different groups of species were substituted sequentially over the ice-free period. The models also identified that G. semen impacts in bloom lakes were only manifested within a single species group, not across species groups, highlighting the rapid renewal of the phytoplankton communities upon bloom collapse. These results provide empirical support of the cross-scale resilience model. Cross-scale resilience could provide an explanation for the paradox that similar species richnesses are seen in bloom-forming lakes and reference lakes despite the clear difference between the community features of the two different sets of lakes investigated.  相似文献   

6.
Summary Sedimentation of phytoplankton provides food and energy for zoobenthic communities. In this study the rates, species composition and biomass of phytoplankton input to Frobisher Bay sediments were examined during ice (late November to July) and open water (late July to October) periods from 1982 to 1985. The rates were higher on the sea bed than at 20 m. The minimum rate (3x105 cells·m-2·day-1) of sedimentation occurred during the early part of the ice period. It increased as the ice thickened and reached a maximum of 2.8x108 cells·m-2·day-1 after the phytoplankton bloom at the beginning of the open water period in the first two weeks of August. The sedimented phytoplankton was dominated by diatoms, with a great majority of pennate species during the spring (April to June) and centric forms during the summer (July to August). Green flagellates, dinoflagellates and chrysophytes occurred as a low percentage of the total population in all seasons. Other indicators (chlorophyll a and phaeopigments) showed highest biomass levels in the deepest traps. They were consistently low during the winter (December to March) and reached their maxima during the open-water period of summer. Their abundance was correlated with the seasonal cycle of the phytoplankton in the water column.  相似文献   

7.
南亚热带贫营养水库春季浮游植物群落结构与动态   总被引:9,自引:1,他引:8       下载免费PDF全文
2005年1~6月,通过每两周一次的高频率采样,对南亚热带贫营养水库——梅溪水库的水文、营养盐和浮游植物进行了调查,并计算水体浮游植物生物量。主要结果如下:梅溪水库浮游植物具有物种少,生物量低,以飞燕角甲藻(Ceratium hirundinella)和多甲藻(Peridinium sp.)为优势藻的特征。12次采样24个样品共检测到浮游植物42种。浮游植物在早春(1~3月)和晚春(4~6月)有显著的差别,其中每次采样浮游植物早春平均13种,晚春平均21种。浮游植物总的细胞丰度为31~273 cells·ml-1,总生物量为0.176~2.024 mg·L-1之间。晚春浮游植物平均生物量明显高于早春。低营养盐和弱酸性水体有利于能够垂直迁移获得营养的鞭毛藻类和其它藻类之间竞争,而使其成为整个春季优势类群。在晚春,随着水温显著增加,浮游植物丰度和生物量也明显增加,但是降雨的增加降低了水体的透明度,大大减缓了由水温上升导致生物量增长的趋势。水温是梅溪水库浮游植物变化的主要限制因子,但是降雨有明显的干扰作用。  相似文献   

8.
The seasonal dynamics of the biomass and production of phyto-, zoo- and bacterioplankton was investigated during the vegetation periods (from May to November) in 1985 and 1986 in the pelagial of the large eutrophic lake Peipsi (Estonia). The average values of productions per vegetation period for the investigation years were as follows: phytoplanktion − 203.5 gC · m−2; bacterioplankton − 37.9 gC · m−2; filter-feeding zooplankton − 20.6 gC · m−2 and predatory zooplankton − 1.5 gC · m−2. The herbivorous zooplankton production constituted 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain — filtrators are feeding mostly on living algae and the detrital food chain seems of little importance. The dominance of large forms (Melosira sp., Aphanothece saxicola), in the phytoplankton during the major part of the vegetation period is assumed to be a result of high grazing pressure on small algae. Zooplankton grazing was investigated in situ in a specially constructed twin bathometer. Experimental measurements revealed, that zooplanktion presence in the experimental vessel actually stimulated the phytoplankton growth in many cases — the negative grazing values have been registered. That could be caused by the stimulation effect of nutrients (N, P), excreted by the concentrated zooplankton in the grazing chamber, which led to an increase of the nongrazed phytoplankton production. Bacteria have satisfied the zooplankton food requirements on average by 11%. Grazing on bacteria increased, when grazing on phytoplankton was somehow disturbed.  相似文献   

9.
In order to provide a better understanding of the dynamics of phytoplankton in the coastal regions of high latitudes, a study was carried out to estimate the dynamics of carbon biomass of autotrophic and heterotrophic algal groups over the austral spring-summer 1997/1998 period. At a fixed station located in the central basin (Paso Ancho) of the Straits of Magellan (53°S), surface water samples were collected at least once a week from September 1997 (early spring) to March 1998 (late summer). Quantitative analysis of biomass of phytoplankton was estimated from geometric volumes, using non-linear equations, and converted to biomass. The pattern of chlorophyll a showed a strong temporal variability, with maximum values (mean 2.8 mg m−3) at the austral spring phytoplankton increase or bloom (October/November) and minimum values during early spring (September: <0.5 mg m−3) and summer (January/March: 0.5–1.0 mg m−3). During the spring bloom, diatoms made up to 90% of the total phytoplankton carbon (0.01–189 μg l−1), followed by a maximum of thecate dinoflagellates (0.08–34 μg l−1), and sporadic high biomass of phytoflagellates during summer. Heterotrophic algal groups such as Gymnodinium and Gyrodinium spp. dominated (70%, in the 5- to 25-μm size range) shortly before the main diatom bloom, and small peaks were observed within spring and early summer periods (0–0.4 μg l−1). Phytoflagellates dominated earlier (spring) with higher carbon biomass (8 μg l−1) and post-bloom periods (summer) when carbon biomass ranged between 1 and 4 μg l−1. Accepted: 6 September 2000  相似文献   

10.
任辉  田恬  杨宇峰  王庆 《生态学报》2017,37(22):7729-7740
随着城市生态健康理念的提出,城市河涌生态健康也受到了前所未有的关注。为更好的了解河涌的水环境和浮游植物现状,于2015年3月至2016年2月对珠江口南沙河涌8个站位水环境和浮游植物群落结构进行调查。结果显示:共发现浮游植物164种(属),隶属7门73属,其中以绿藻种类最多,达33属79种,占48.17%;硅藻次之,17属41种,占25%。优势种为梅尼小环藻(Cyclotella meneghiniana)、假鱼腥藻属(Pseudanabaena sp.)和小球藻(Chlorella vulgaris)。浮游植物细胞密度在0.19×10~6—101.34×10~6个/L内变动,呈现单峰型,在4月发生拟菱形弓形藻(Schroederia nitzschioides)水华,14涌密度高达87.38×10~6个/L,随后因强降雨细胞密度骤降。浮游植物群落的季节演替基本符合PEG(Plankton Ecology Group)模型,从冬季的硅藻,到春夏季的绿藻,再到秋季的蓝藻。One-way ANOVA分析显示,各月份浮游植物细胞密度差异显著(P0.01)。Pearson相关性分析表明绿藻细胞丰度变化主导着浮游植物总丰度的变化(r=0.454,P0.01)。运用Margalef物种丰富度指数、Shannon物种多样性指数、Pielou均匀度指数对水体进行评价表明,调查水体呈中度污染。相关加权营养状态指数表明,河涌全年处于富营养化状态。浮游植物聚类分析表明,时间异质性较高,总体相似性较低;空间上相似性较高,人为活动可能是导致空间差异的关键因子。冗余分析显示,叶绿素a、溶解氧、盐度、水温、总氮和p H与浮游植物群落结构关系最为密切。p H对硅藻门浮游植物影响较大,碱性条件适宜直链藻生长,春季水华形成的驱动因子是盐度、温度和总氮。  相似文献   

11.
Nicola Sechi 《Plant biosystems》2013,147(5-6):347-360
Abstract

Composition and biomass of phytoplanktonic communities of Lago Omodeo (Central Sardinia).—A qualitative and quantitative study has been made on the phytoplankton of Lago Omodeo. The algal associations are typical of eutrophic waters. The dominant blue-green algae in summer and autumn were: Chroococcus dispersus, Microcystis flos-aquae, Aphanizomenon flos-aquae, Anabaena flos-aquae, Anabaena planctonica; dominant in winter and spring the diatom Melosira distans. The mean standing crop of algae for the trophogenic zone was 9.2 mm3/l; a maximum crop of 53 mm3/l was recorded in August during a Microcystis bloom.  相似文献   

12.
Using ten years (2003–2012) of satellite Chlorophyll-a data, we report that annual phytoplankton bloom climax in the Northwest Pacific marginal seas (17°–58°N) delays northward at a rate of 22.98 ± 2.86 km day−1. The spring bloom is a dominant feature of the phytoplankton seasonal cycle in this region, except for the northern South China Sea, which features a winter bloom. The sea surface hourly Photosynthetically Available Radiation (PAR) intensity averaged over the bloom peak duration is nearly uniform (1.04 ± 0.10 W m−2 h−1) among the four sub-regions (i.e. the northern South China Sea, the Kuroshio waters, the Sea of Japan and the Sea of Okhotsk), although different algal species in these four distinct ecological provinces could adapt to a much larger change in other environmental parameters (including total daily PAR, day length, sea surface temperature, net surface heat flux, mixed layer depth, wind speed and euphotic depth). The differences of the hourly PAR intensity between the four provinces during their bloom periods are smaller than those during non-bloom seasons. In contrast, an increasing total daily PAR (W m−2 day−1), due to the longer day length at higher latitudes, may balance decreasing sea surface temperature and induce algal flowering. Our results point to an optimal hourly light intensity for the annual phytoplankton bloom peak timing in this entire region, which could potentially become an indicator for the requirement of these annual bloom peaks.  相似文献   

13.
Over 1200 samples were collected from Louisiana estuarine and coastal shelf waters between 1989 and 2002, and analyzed to examine the population dynamics of Pseudo-nitzschia and to assess the potential threat posed by domoic acid (DA), a potent neurotoxin produced by some members within this toxigenic diatom genus. Results demonstrated that three species in this region (Pseudo-nitzschia multiseries, P. pseudodelicatissima complex, P. delicatissima) produce DA, and that particulate toxin levels were highest (up to 3.05 μg L−1) during the spring bloom, while cellular concentrations were highest in the winter/early spring when P. multiseries was most abundant (up to 30 pg cell−1). These particulate toxin levels are comparable to those seen in other regions (e.g., United States west coast) where DA poisoning events have occurred in the past. Pseudo-nitzschia were most abundant under dissolved inorganic nitrogen-replete conditions coupled with lower silicate and/or phosphate concentrations, and in the early spring months when temperatures were cooler. Pseudo-nitzschia were occasionally well-represented in the phytoplankton assemblage (≥106 cells L−1 in 14% of samples, over 50% of total phytoplankton in 5% of samples), indicating that planktivores (e.g., Gulf menhaden, Brevoortia patronus) may have little choice but to consume Pseudo-nitzschia cells, thereby providing potential vectors for DA transfer to higher trophic levels. By comparison, eastern oysters (Crassostrea virginica) present in estuarine waters may be more exposed to this toxin when Pseudo-nitzschia cells are part of a mixed assemblage, reducing selective grazing by these bivalves. C. virginica may thus represent the most effective vector for DA exposure in humans.  相似文献   

14.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

15.
Aberle N  Lengfellner K  Sommer U 《Oecologia》2007,150(4):668-681
This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Δ0°C) to 0.23 day−1 (Δ4°C) for ciliates and 0.09 (Δ0°C) to 1.62 day−1 (Δ4°C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms. Priority programme of the German Research Foundation—contribution 4.  相似文献   

16.
A small thecate dinoflagellate was encountered during winter and spring in the phytoplankton community of a shallow, brackish and hypertrophic pond in the South of France. The abundance of material permitted its identification, using scanning electron microscopy, as Oblea rotunda Balech ex Sournia. However, morphological features showed some discrepancies with the typical characteristics of O. rotunda. Environmental hydrographic parameters in the pond were very different from marine ecosystems where O. rotunda is usually reported. In this polluted and alkaline pond, salinity was low, ranging from 1.1 to 6.2 p.s.u.; the maximum densities of O. rotunda (greater than 1?×?105 cells l???1) were observed at temperatures around 13°C, after a Cylindrotheca closterium?–?Heterocapsa rotundata bloom in early spring. These two species and other abundant taxa of the phytoplankton had seasonal patterns that could explain the presence of O. rotunda, since they could have been a food for this heterotrophic species. As this population showed most of the morphological criteria of O. rotunda, but with some variability and a different ecology, it is better considered as a variant of the marine species, rather than as a new species. This study provides additional data on the ecological and morphological features of this poorly known small peridinioid species, previously only reported from open seas and oceans.  相似文献   

17.
1. In natural lakes, modifications in the species composition and abundance of phytoplankton communities may ultimately be responses to changes in nutrient availability and climatic fluctuations. Phytoplankton and associated environmental factors were collected at monthly intervals from the beginning of the 1990s to 2007 in the large subalpine Lake Garda (zmax = 350 m, V = 49 × 109 m3). In this study period, the lake showed a slight and continuous increase of total phosphorus (TP) in the water column, up to concentrations of 18–20 μg P L?1. This increase represented the last stage of a long‐term process of enrichment documented since the 1970s, when concentrations of TP were below or around 10 μg P L?1. 2. At the community level, annual phytoplankton cycles underwent a unidirectional and slow shift mainly due to changes in the species more affected by the nutrient enrichment of the lake. After a first and long period of dominance by conjugatophytes (Mougeotia) and diatoms (Fragilaria), phytoplankton biomass in recent years was sustained by cyanobacteria (Planktothrix). Other important modifications in the development of phytoplankton were superimposed on this pattern due to the effects of annual climate fluctuations principally mediated by the deep mixing events at spring overturn and, secondarily, by temperature and thermal stability of the water column during the growing season. 3. Interannual variations in the stability and temperature of the water column appeared to influence the development of a few subdominant flagellates (dinophytes and cryptophytes). Nevertheless, the major impact of climate on phytoplankton was indirect, and mediated through the effects of winter climatic conditions on deep mixing dynamics. Winter climatic fluctuations proved to be a key element in a linked chain of causal factors including cooling of hypolimnetic waters, deep vertical mixing and epilimnetic nutrient replenishment. The process of fertilisation was measurable both for TP and dissolved inorganic nitrogen, although only the first had a large effect, reinforcing the seasonal growth of a few dominant groups. The degree of nutrient replenishment further increased the spring development of large diatoms and the increase of Planktothrix in summer and autumn. 4. Currently, changes in nutrient concentrations have the greatest effect on the phytoplankton community, while direct effects due to the interannual variations in the thermal regime are of secondary importance compared with the indirect effects mediated through deep water mixing and spring fertilisation. Overall, the results demonstrate that the consequences of climatic fluctuations and climate warming on phytoplankton communities need to be studied at different levels of complexity and integration, from the direct effects of temperature and thermal regime, to the indirect effects mediated by the physiographic characteristics of water bodies.  相似文献   

18.
  1. Understanding the successional patterns of microbial communities during a phytoplankton bloom is crucial for predicting the compositional and functional stability of lake ecosystems in response to the disturbance of a bloom. Previous studies on bacterial communities associated with blooms have rarely studied the dynamics of these communities. The successional patterns of bacterial communities within different micro-habitats (i.e. water column versus particles) and mechanisms that shape these communities that differ in composition and structure remain unclear.
  2. We selected a eutrophic urban lake to investigate the succession of bacterial communities during a bloom. We divided the bacterial communities into free-living (FL) and particle-attached (PA) groups based on their different lifestyles. The amplicon-based 16S rRNA gene high-throughput sequencing technology was used to obtain bacterial community composition and phylogenetic structure.
  3. Our study showed distinct successional patterns between FL and PA bacterial communities, and the two bacterial lifestyles showed different responses and resilience to the bloom, in terms of diversity and relative abundance of bacterial taxa. Alpha-diversity of the PA bacterial community decreased during the bloom, whereas that of the FL bacterial community increased. More taxa in the FL bacterial community showed resilience after the disturbance than in the PA bacterial community.
  4. The influence of phytoplankton blooms on the assembly of the bacterial community can be viewed as niche selection that led to the decrease in the relative importance of stochastic processes in shaping both FL and PA bacterial communities. This study shows the ecological significance of the bacterial community response to bloom events in lakes. It also shows that assembly processes differ for bacterial communities that have different lifestyles in lake ecosystems disturbed by phytoplankton blooms.
  相似文献   

19.
A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.  相似文献   

20.
The development of the seasonal phytoplankton bloom in the Ross Sea was studied during two cruises. The first, conducted in November-December 1994, investigated the initiation and rapid growth of the bloom, whereas the second (December 1995-January 1996) concentrated on the bloom's maximum biomass period and the subsequent decline in biomass. Central to the understanding of the controls of growth and the summer decline of the bloom is a quantitative assessment of the growth rate of phytoplankton. Growth rates were estimated over two time scales with different methods. The first estimated daily growth rates from isotropic incorporation under simulated in situ conditions, including 14C, 15N and 32Si uptake measurements combined with estimates of standing stocks of particulate organic carbon, nitrogen and biogenic silica. The second method used daily to weekly changes in biomass at selected locations, with net growth rates being estimated from changes in standing stocks of phytoplankton. In addition, growth rates were estimated in large-volume experiments under optimal irradiances. Growth rates showed distinct temporal patterns. Early in the growing season, short-term estimates suggested that growth rates of in situ assemblages were less than maximum (relative to the temperature-limited maximum) and were likely reduced due to low irradiance regimes encountered under the ice. Growth rates increased thereafter and appeared to reach their maximum as biomass approached the seasonal peak, but decreased markedly in late December. Differences between the major taxonomic groups present were also noted, especially from the isotopic tracer experiments. The haplophyte Phaeocystic antarctica was dominant in 1994 throughout the growing season, and it exhibited the greatest growth rates (mean 0.41 day-1) during spring. Diatom standing stocks were low early in the growing season, and growth rates averaged 0.100 day-1. In summer diatoms were more abundant, but their growth rates remained much lower (mean of 0.08 day-1) than the potential maximum. Understanding growth rate controls is essential to the development of predictive models of the carbon cycle and food webs in Antarctic waters.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号