首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ion channels are characterized by inherently stochastic behavior which can be represented by continuous-time Markov models (CTMM). Although methods for collecting data from single ion channels are available, translating a time series of open and closed channels to a CTMM remains a challenge. Bayesian statistics combined with Markov chain Monte Carlo (MCMC) sampling provide means for estimating the rate constants of a CTMM directly from single channel data. In this article, different approaches for the MCMC sampling of Markov models are combined. This method, new to our knowledge, detects overparameterizations and gives more accurate results than existing MCMC methods. It shows similar performance as QuB-MIL, which indicates that it also compares well with maximum likelihood estimators. Data collected from an inositol trisphosphate receptor is used to demonstrate how the best model for a given data set can be found in practice.  相似文献   

2.
Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.  相似文献   

3.
Inverse sampling is considered to be a more appropriate sampling scheme than the usual binomial sampling scheme when subjects arrive sequentially, when the underlying response of interest is acute, and when maximum likelihood estimators of some epidemiologic indices are undefined. In this article, we study various statistics for testing non-unity rate ratios in case-control studies under inverse sampling. These include the Wald, unconditional score, likelihood ratio and conditional score statistics. Three methods (the asymptotic, conditional exact, and Mid-P methods) are adopted for P-value calculation. We evaluate the performance of different combinations of test statistics and P-value calculation methods in terms of their empirical sizes and powers via Monte Carlo simulation. In general, asymptotic score and conditional score tests are preferable for their actual type I error rates are well controlled around the pre-chosen nominal level, and their powers are comparatively the largest. The exact version of Wald test is recommended if one wants to control the actual type I error rate at or below the pre-chosen nominal level. If larger power is expected and fluctuation of sizes around the pre-chosen nominal level are allowed, then the Mid-P version of Wald test is a desirable alternative. We illustrate the methodologies with a real example from a heart disease study.  相似文献   

4.
5.
Is the Rapoport effect widespread? Null models revisited   总被引:1,自引:0,他引:1  
Aim  To test the Rapoport effect using null models and data sets taken from the literature. We propose an improvement on an existing method, testing the Rapoport effect in elevational and latitudinal distributions when distributions are restricted by sampling.
Location  Global.
Methods  First, we hypothesized that real range size distributions are similar to those expected by null assumptions (expected by only imposing boundaries to species distributions). When these distributions were different from those expected under the null assumptions, we tested the hypothesis that these distributions correspond to those expected when a Rapoport effect occurs. We used two simulation methods, random and pseudo-random, which differed only in that the latter one assumes fixed species mid-points, coinciding with real mid-points. Observed correlations between range size and mid-point were compared with the frequency distribution of 1000 simulations, using both simulation methods. We compared the correlation curves generated by 1000 simulations with those of the observed distributions, testing whether correlations indicated a Rapoport effect.
Results  Several significant patterns of correlations between range size and mid-point were observed in the data sets when compared with random and pseudo-random simulations. However, few of these correlations were consistent with a Rapoport effect.
Main conclusions  Although some recent studies are consistent with a Rapoport effect, our results suggest that the Rapoport effect is not a widespread pattern in global ecology.  相似文献   

6.
We consider the problem of estimating a population size by removal sampling when the sampling rate is unknown. Bayesian methods are now widespread and allow to include prior knowledge in the analysis. However, we show that Bayes estimates based on default improper priors lead to improper posteriors or infinite estimates. Similarly, weakly informative priors give unstable estimators that are sensitive to the choice of hyperparameters. By examining the likelihood, we show that population size estimates can be stabilized by penalizing small values of the sampling rate or large value of the population size. Based on theoretical results and simulation studies, we propose some recommendations on the choice of the prior. Then, we applied our results to real datasets.  相似文献   

7.
Abstract Disease surveillance in wildlife populations involves detecting the presence of a disease, characterizing its prevalence and spread, and subsequent monitoring. A probability sample of animals selected from the population and corresponding estimators of disease prevalence and detection provide estimates with quantifiable statistical properties, but this approach is rarely used. Although wildlife scientists often assume probability sampling and random disease distributions to calculate sample sizes, convenience samples (i.e., samples of readily available animals) are typically used, and disease distributions are rarely random. We demonstrate how landscape-based simulation can be used to explore properties of estimators from convenience samples in relation to probability samples. We used simulation methods to model what is known about the habitat preferences of the wildlife population, the disease distribution, and the potential biases of the convenience-sample approach. Using chronic wasting disease in free-ranging deer (Odocoileus virginianus) as a simple illustration, we show that using probability sample designs with appropriate estimators provides unbiased surveillance parameter estimates but that the selection bias and coverage errors associated with convenience samples can lead to biased and misleading results. We also suggest practical alternatives to convenience samples that mix probability and convenience sampling. For example, a sample of land areas can be selected using a probability design that oversamples areas with larger animal populations, followed by harvesting of individual animals within sampled areas using a convenience sampling method.  相似文献   

8.
On the Bayesian analysis of ring-recovery data   总被引:5,自引:0,他引:5  
Vounatsou and Smith (1995, Biometrics 51, 687-708) describe the modern Bayesian analysis of ring-recovery data. Here we discuss and extend their work. We draw different conclusions from two major data analyses. We emphasize the extreme sensitivity of certain parameter estimates to the choice of prior distribution and conclude that naive use of Bayesian methods in this area can be misleading. Additionally, we explain the discrepancy between the Bayesian and classical analyses when the likelihood surface has a flat ridge. In this case, when there is no unique maximum likelihood estimate, the Bayesian estimators are remarkably precise.  相似文献   

9.
Elizabeth R. Brown 《Biometrics》2010,66(4):1266-1274
Summary We present a Bayesian model to estimate the time‐varying sensitivity of a diagnostic assay when the assay is given repeatedly over time, disease status is changing, and the gold standard is only partially observed. The model relies on parametric assumptions for the distribution of the latent time of disease onset and the time‐varying sensitivity. Additionally, we illustrate the incorporation of historical data for constructing prior distributions. We apply the new methods to data collected in a study of mother‐to‐child transmission of HIV and include a covariate for sensitivity to assess whether two different assays have different sensitivity profiles.  相似文献   

10.
In observational cohort studies with complex sampling schemes, truncation arises when the time to event of interest is observed only when it falls below or exceeds another random time, that is, the truncation time. In more complex settings, observation may require a particular ordering of event times; we refer to this as sequential truncation. Estimators of the event time distribution have been developed for simple left-truncated or right-truncated data. However, these estimators may be inconsistent under sequential truncation. We propose nonparametric and semiparametric maximum likelihood estimators for the distribution of the event time of interest in the presence of sequential truncation, under two truncation models. We show the equivalence of an inverse probability weighted estimator and a product limit estimator under one of these models. We study the large sample properties of the proposed estimators and derive their asymptotic variance estimators. We evaluate the proposed methods through simulation studies and apply the methods to an Alzheimer's disease study. We have developed an R package, seqTrun , for implementation of our method.  相似文献   

11.
Ecological surveys provide the basic information needed to estimate differences in species richness among assemblages. Comparable estimates of the differences in richness between assemblages require equal mean species detectabilities across assemblages. However, mean species detectabilities are often unknown, typically low, and potentially different from one assemblage to another. As a result, inferences regarding differences in species richness among assemblages can be biased. We evaluated how well three methods used to produce comparable estimates of species richness achieved equal mean species detectabilities across diverse assemblages: rarefaction, statistical estimators, and standardization of sampling effort on mean taxonomic similarity among replicate samples (MRS). We used simulated assemblages to mimic a wide range of species-occurrence distributions and species richness to compare the performance of these three methods. Inferences regarding differences in species richness based on rarefaction were highly biased when richness estimates were compared among assemblages with distinctly different species-occurrence distributions. Statistical estimators only marginally reduced this bias. Standardization on MRS yielded the most comparable estimates of differences in species richness. These findings have important implications for our understanding of species-richness patterns, inferences drawn from biological monitoring data, and planning for biodiversity conservation.  相似文献   

12.
Bhoj (1997c) proposed a new ranked set sampling (NRSS) procedure for a specific two‐parameter family of distributions when the sample size is even. This NRSS procedure can be applied to one‐parameter family of distributions when the sample size is even. However, this procedure cannot be used if the sample size is odd. Therefore, in this paper, we propose a modified version of the NRSS procedure which can be used for one‐parameter distributions when the sample size is odd. Simple estimator for the parameter based on proposed NRSS is derived. The relative precisions of this estimator are higher than those of other estimators which are based on other ranked set sampling procedures and the best linear unbiased estimator using all order statistics.  相似文献   

13.
Dunson DB  Chen Z 《Biometrics》2004,60(2):352-358
In multivariate survival analysis, investigators are often interested in testing for heterogeneity among clusters, both overall and within specific classes. We represent different hypotheses about the heterogeneity structure using a sequence of gamma frailty models, ranging from a null model with no random effects to a full model having random effects for each class. Following a Bayesian approach, we define prior distributions for the frailty variances consisting of mixtures of point masses at zero and inverse-gamma densities. Since frailties with zero variance effectively drop out of the model, this prior allocates probability to each model in the sequence, including the overall null hypothesis of homogeneity. Using a counting process formulation, the conditional posterior distributions of the frailties and proportional hazards regression coefficients have simple forms. Posterior computation proceeds via a data augmentation Gibbs sampling algorithm, a single run of which can be used to obtain model-averaged estimates of the population parameters and posterior model probabilities for testing hypotheses about the heterogeneity structure. The methods are illustrated using data from a lung cancer trial.  相似文献   

14.
To study lifetimes of certain engineering processes, a lifetime model which can accommodate the nature of such processes is desired. The mixture models of underlying lifetime distributions are intuitively more appropriate and appealing to model the heterogeneous nature of process as compared to simple models. This paper is about studying a 3-component mixture of the Rayleigh distributionsin Bayesian perspective. The censored sampling environment is considered due to its popularity in reliability theory and survival analysis. The expressions for the Bayes estimators and their posterior risks are derived under different scenarios. In case the case that no or little prior information is available, elicitation of hyperparameters is given. To examine, numerically, the performance of the Bayes estimators using non-informative and informative priors under different loss functions, we have simulated their statistical properties for different sample sizes and test termination times. In addition, to highlight the practical significance, an illustrative example based on a real-life engineering data is also given.  相似文献   

15.
The author describes a Bayesian probability model for estimating population distributions when either micro or macro data on population migration are available. The model is tested using data for two groups of five regions in the Federal Republic of Germany, and it is found that the macro Bayesian estimators lead to a better projection of population distribution than those using micro data.  相似文献   

16.
Particle classification is an important component of multivariate statistical analysis methods that has been used extensively to extract information from electron micrographs of single particles. Here we describe a new Bayesian Gibbs sampling algorithm for the classification of such images. This algorithm, which is applied after dimension reduction by correspondence analysis or by principal components analysis, dynamically learns the parameters of the multivariate Gaussian distributions that characterize each class. These distributions describe tilted ellipsoidal clusters that adaptively adjust shape to capture differences in the variances of factors and the correlations of factors within classes. A novel Bayesian procedure to objectively select factors for inclusion in the classification models is a component of this procedure. A comparison of this algorithm with hierarchical ascendant classification of simulated data sets shows improved classification over a broad range of signal-to-noise ratios.  相似文献   

17.
Integrative analyses based on statistically relevant associations between genomics and a wealth of intermediary phenotypes (such as imaging) provide vital insights into their clinical relevance in terms of the disease mechanisms. Estimates for uncertainty in the resulting integrative models are however unreliable unless inference accounts for the selection of these associations with accuracy. In this paper, we develop selection-aware Bayesian methods, which (1) counteract the impact of model selection bias through a “selection-aware posterior” in a flexible class of integrative Bayesian models post a selection of promising variables via ℓ1-regularized algorithms; (2) strike an inevitable trade-off between the quality of model selection and inferential power when the same data set is used for both selection and uncertainty estimation. Central to our methodological development, a carefully constructed conditional likelihood function deployed with a reparameterization mapping provides tractable updates when gradient-based Markov chain Monte Carlo (MCMC) sampling is used for estimating uncertainties from the selection-aware posterior. Applying our methods to a radiogenomic analysis, we successfully recover several important gene pathways and estimate uncertainties for their associations with patient survival times.  相似文献   

18.
We develop a Bayesian approach to sample size computations for surveys designed to provide evidence of freedom from a disease or from an infectious agent. A population is considered "disease-free" when the prevalence or probability of disease is less than some threshold value. Prior distributions are specified for diagnostic test sensitivity and specificity and we test the null hypothesis that the prevalence is below the threshold. Sample size computations are developed using hypergeometric sampling for finite populations and binomial sampling for infinite populations. A normal approximation is also developed. Our procedures are compared with the frequentist methods of Cameron and Baldock (1998a, Preventive Veterinary Medicine34, 1-17.) using an example of foot-and-mouth disease. User-friendly programs for sample size calculation and analysis of survey data are available at http://www.epi.ucdavis.edu/diagnostictests/.  相似文献   

19.
Xie W  Lewis PO  Fan Y  Kuo L  Chen MH 《Systematic biology》2011,60(2):150-160
The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenetics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TI) method is much more accurate than the HM method but requires more computation. In this paper, we introduce a new method, steppingstone sampling (SS), which uses importance sampling to estimate each ratio in a series (the "stepping stones") bridging the posterior and prior distributions. We compare the performance of the SS approach to the TI and HM methods in simulation and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of the HM method, despite the extra computation needed.  相似文献   

20.
Chao A  Lin CW 《Biometrics》2012,68(3):912-921
Summary A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals' detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g., quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of some previous estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号