首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Chi-hua ChiuEmail:
  相似文献   

2.
The early origin of four vertebrate Hox gene clusters duringthe evolution of gnathostomes was likely caused by two consecutiveduplications of the entire genome and the subsequent loss ofindividual genes. The presumed conserved and important rolesof these genes in tetrapods during development led to the generalassumption that Hox cluster architecture had remained unchangedsince the last common ancestor of all jawed vertebrates. Butrecent data from teleost fishes reveals that this is not thecase. Here, we present an analysis of the evolution of vertebrateHox genes and clusters, with emphasis on the differences betweenthe Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian)lineages. In contrast to the general conservation of genomicarchitecture and gene sequence observed in sarcopterygians,the evolutionary history of actinopterygian Hox clusters likelyincludes an additional (third) genome duplication that initiallyincreased the number of clusters from four to eight. We document,for the first time, higher rates of gene loss and gene sequenceevolution in the Hox genes of fishes compared to those of landvertebrates. These two observations might suggest that two differentmolecular evolutionary strategies exist in the two major vertebratelineages. Preliminary data from the African cichlid fish Oreochromisniloticus compared to those of the pufferfish and zebrafishreveal important differences in Hox cluster architecture amongfishes and, together with genetic mapping data from Medaka,indicate that the third genome duplication was not zebrafish-specific,but probably occurred early in the history of fishes. Each descendingfish lineage that has been characterized so far, distinctivelymodified its Hox cluster architecture through independent secondarylosses. This variation is related to the large body plan differencesobserved among fishes, such as the loss of entire sets of appendagesand ribs in some lineages.  相似文献   

3.
In mammals, a total of six iroquois (Irx) genes exist, which are organized into two clusters. Here we report on the organization of all iroquois genes present in fish, using zebrafish (Danio rerio) and pufferfish (Fugu rubripes and Tetraodon nigroviridis) as examples. A total of 10 Irx genes were found in pufferfish, and 11 in zebrafish; all but one of these genes are organized into clusters (four clusters plus one isolated gene locus). The extra fish clusters result from chromosome duplication in the fish lineage, after its divergence from tetrapod vertebrates. Two of the four fish clusters are highly conserved to the ones in mammals, with regard to similarity of genes and cluster architecture. Irx genes within the other two clusters have diverged in sequence and cluster organization, suggesting functional divergence. These results will allow us to use the zebrafish system for functional and comparative studies of iroquois genes in vertebrate development.Electronic Supplementary Material Supplementary material is available in the online version of this article at Edited by D. Tautz  相似文献   

4.
We studied the genomic organization of Hox genes in Atlantic salmon (Salmo salar) and made comparisons to that in rainbow trout (Oncorhynchus mykiss), another member of the family Salmonidae. We used these two species to test the hypothesis that the Hox genes would provide evidence for a fourth round of duplication (4R) of this gene family given the recent polyploid ancestry of the salmonid fish. Thirteen putative Hox clusters were identified and 10 of these complexes were localized to the current Atlantic salmon genetic map. Syntenic regions with the rainbow trout linkage map were detected and further homologies and homeologies are suggested. We propose that the common ancestor of Atlantic salmon and rainbow trout possessed at least 14 clusters of Hox genes, and additional clusters cannot be ruled out. Salmonid Hox cluster complements seem to be more similar to those of zebrafish (Danio rerio) than medaka (Oryzias latipes) or pufferfish (Sphoeroides nephelus and Takifugu rubripes), as both Atlantic salmon and rainbow trout have retained HoxCb ortholog, which has been lost in medaka and pufferfish but not in zebrafish. However, our data suggest that phylogenetically, the homologous genes within each cluster express mosaic relationships among the teleosts tested and, thus, leave unresolved the interfamilial relationships among these taxa. Sequence data from this article have been deposited within the EMBL/GenBank Data Libraries under the following accession numbers: AY677341, AY677342, AY677343, AY677344, AY677345, AY677346, AY677347, AY677348, AY677349, AY677350, AY677351, AY677352, AY677353, AY677354, AY677355, AY677356, AY677357, AY677358, AY677359, AY677360, AY677361, AY677362, AY677363, AY677364 and AY677365. [Reviewing Editor: Dr. Axel Meyer]  相似文献   

5.
We examined the genomic organization of Hox genes in rainbow trout (Oncorhynchus mykiss), a tetraploid teleost derivative species, in order to test models of presumptive genomic duplications during vertebrate evolution. Thirteen putative clusters were localized in the current rainbow trout genetic map; however, analysis of the sequence data suggests the presence of at least 14 Hox clusters. Many duplicated genes appear to have been retained in the genome and share a high percentage of amino acid similarity with one another. We characterized two Hox genes located within the HoxCb cluster that may have been lost independently in other teleost species studied to date. Finally, we identified conserved syntenic blocks between salmonids and human, and provide data supporting two new linkage group homeologies (i.e., RT-3/16, RT-12/29) and three previously described homeologies (RT-2/9, RT-17/22, and RT-27/31) in rainbow trout. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. The sequence data for this study have been submitted to GenBank under the following accession numbers: AY567792, AY567793, AY567794, AY567795, AY567796, AY567797, AY567798, AY567799, AY567800, AY567801, AY567802, AY567803, AY567804, AY567805, AY567806, AY567807, AY567808, AY567809, AY567810, AY567812, AY567813, AY567814, AY567815, AY567816, and AY567817. [Reviewing Editor : Dr. Axel Meyer]  相似文献   

6.
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman]  相似文献   

7.
The GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5′ and 3′ flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5′ flanking sequence and 1596 nt of 3′ flanking sequence that are “unique”; between these are eight repeat units, including the eight GH genes/pseudogenes. The breakpoints between these repeats are very similar, indicating a regular pattern of gene duplication. These breakpoints do not correspond to those found in the much less regular human GH gene cluster. This and phylogenetic analysis of the repeat units within the marmoset gene cluster strongly support the independent origin of these gene clusters, and the idea that the episode of rapid evolution that occurred during GH evolution in primates preceded the gene duplications. The marmoset GH gene cluster also differs from that of human in having fewer and more evenly distributed Alu sequences (a single pair in each repeat unit) and a “P-element” upstream of every gene/pseudogene. In human there is no P-element upstream of the gene encoding pituitary GH, and these elements have been implicated in placental expression of the other genes of the cluster. The GH gene clusters in marmoset and capuchin appear to have arisen as the consequence of a single-gene duplication event, but in capuchin there was then a remarkable expansion of the GH locus, giving at least 40 GH-like genes and pseudogenes. Thus even among NWMs the GH gene cluster is very variable. [Reviewing Editor: Nicolas Galtier]  相似文献   

8.
Evolutionarily conserved gene clusters are interesting for two reasons: (1) they may illuminate ancient events in genome evolution and (2) they may reveal ongoing stabilizing selection; that is, the conservation of gene clusters may have functional significance. To test if the Wnt family of signaling factors exhibits conserved clustering in basal metazoans and if those clusters are of functional importance, we searched the genomic sequence of the sea anemone Nematostella vectensis for Wnt clusters and correlated the clustering we observed with published expression patterns. Our results indicate that the Wnt1Wnt6Wnt10 cluster observed in Drosophila melanogaster is partially conserved in the cnidarian lineage; Wnt6 and Wnt10 are separated by less than 4,500 nucleotides in Nematostella. A novel cluster comprised of Wnt5Wnt7/Wnt7b was observed in Nematostella. Clustered Wnt genes do not exhibit Hox-like colinearity nor is the expression of linked Wnt genes more similar than the expression of nonlinked Wnt genes. Wnt6 and Wnt10 are not expressed in a spatially or temporally contiguous manner, and Wnt5 and Wnt7 are expressed in different germ layers.  相似文献   

9.
A whole-genome duplication in the ray-finned fish lineage has been supported by the analyses of the genome sequence of the Japanese pufferfish, Fugu rubripes. Recently, genome sequence of a second teleost fish, the freshwater pufferfish, Tetraodon nigroviridis, was completed. Comparisons of long-range synteny between the Tetraodon and human genomes provided additional evidence for the whole-genome duplication in the ray-finned fish lineage. In the present study, we conducted phylogenetic analysis of the Tetraodon and human proteins to identify ray-finned fish lineage-specific (‘fish-specific’) duplicate genes in the Tetraodon genome. Our analyses provide evidence for 1087 well defined fish-specific duplicate genes in Tetraodon. We also analyzed the Fugu proteome that was predicted in the recent Fugu genome assembly, and identified 346 duplicate genes in addition to the 425 duplicates previously identified. We estimated the ages of duplicate genes using the molecular clock. The ages of duplicate genes in the two pufferfishes independently support a large-scale gene duplication around 380–400 Myr ago. In addition, a burst of recent gene duplications was evident in the Tetraodon lineage. These findings provide further evidence for a whole-genome duplication early in the evolution of ray-finned fishes, and suggest that independent gene duplications have occurred recently in the Tetraodon lineage.  相似文献   

10.
The chlorinated insecticide γ-hexachlorocyclohexane (γ-HCH) is sequentially metabolized by the products of linA, linB, linC, linD, linE, and linF genes to β-ketoadipate, which is subsequently mineralized. Two or more copies of these genes are present in the bacterium Pseudomonas aeruginosa ITRC-5 that was isolated earlier by selective enrichment on technical-HCH. At least one copy of linA, linB, linC, linD, and possibly linE is lost from ITRC-5 upon its growth on γ-HCH. All the lin genes, however, are lost when the bacterium was grown in Luria–Bertani (LB) medium. The loss of lin genes is accompanied with the loss/rearrangement of insertion sequence IS6100 genes. Concomitant to the loss of lin genes, the degradation of HCH-isomers by “γ-HCH grown cells” is slower, when compared with “technical-HCH grown cells”, and is completely lost by “LB-grown cells”. The selective loss of lin genes during different growth conditions has not been reported before and is expected to help in understanding the dynamism of degradative genes.  相似文献   

11.
Summary One of the pupal cuticle protein (PCP) genes has been found within an intron of aDrosophila housekeeping gene (theGart locus) that encodes three enzymes involved in the purine pathway. This intronic gene has been described as a gene within a gene, and the gene is now called a “nested” gene. Because the intronic PCP gene has sequence similarity with the larval cuticle protein (LCP) gene, it may have been derived from one of the LCP genes or their ancestral gene. We have studied possible phylogenetic relationships among these five genes by comparing nucleotide sequences of four LCP genes with that of the PCP gene. The results obtained suggest that the PCP gene may have originated from an ancestral gene before duplication of the LCP genes occurred. Using the number of synonymous (silent) substitutions, we then estimated the divergence time between the PCP gene and the LCP genes to be about 70 million years (Myr). The divergence time estimated is much larger than that for the sibling species ofD. melanogaster (about 2.5 Myr), indicating that the “nested” gene structure can be seen not only inDrosophila melanogaster, but also in other distantly relatedDrosophila species.  相似文献   

12.
The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted “winter type” allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F2 progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel “spring” alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted “winter type” alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F2 populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of “winter vs spring type” alleles at the VRN-H loci.  相似文献   

13.
Phenetic analyses of 218 OTUs belonging toVaccinium sectionMyrtillus and scored for 13 characters generated five robust clusters.Vaccinium parvifolium is the most distinct cluster, followed by the “myrtillus-scoparium” complex, thenV. membranaceum, V. caespitosum, and the “ovalifolium-deliciosum” complex. Biosystematic studies suggest that the five clusters comprise seven taxa that possess many of the properties that define biological species. Indeed, the recognition of the seven taxa as species is supported by cytological, phenological, biogeographical and ecological as well as chemical data. A detailed taxonomic treatment for all these taxa is presented.  相似文献   

14.
Here we analyze the molecular evolution of the β-esterase gene cluster in the Drosophila genus using the recently released genome sequences of 12 Drosophila species. Molecular evolution in this small cluster is noteworthy because it contains contrasting examples of the types and stages of loss of gene function. Specifically, missing orthologs, pseudogenes, and null alleles are all inferred. Phylogenetic analyses also suggest a minimum of 9 gene gain–loss events; however, the exact number and age of these events is confounded by interparalog recombination. A previous enigma, in which allozyme loci were mapped to β-esterase genes that lacked catalytically essential amino acids, was resolved through the identification of neighbouring genes that contain the canonical catalytic residues and thus presumably encode the mapped allozymes. The originally identified genes are evolving with selective constraint, suggesting that they have a “noncatalytic” function. Curiously, 3 of the 4 paralogous β-esterase genes in the D. ananassae genome sequence have single inactivating (frame-shift or nonsense) mutations. To determine whether these putatively inactivating mutations were fixed, we sequenced other D. ananassae alleles of these four loci. We did not find any of the 3 inactivating mutations of the sequenced strain in 12 other strains; however, other inactivating mutations were observed in the same 3 genes. This is reminiscent of the high frequency of null alleles observed in one of the β-esterase genes (Est7/EstP) of D. melanogaster. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
同源盒基因(Hox)与哺乳动物生殖   总被引:2,自引:0,他引:2  
哺乳动物的同源盒基因(Hox)与果蝇的同源异形基因是同源基因,该基因编码的DNA片段含183碱基对,转录由61个氨基酸残基组成的蛋白质保守结构域,称同源异型域.Hox基因碱基顺序及在染色体中的位置都是高度保守的.Hox基因在体节结构分化等空间信息调控中起着重要作用,按特异的空间模式赋予每一体节其自身的特点.近年来的研究表明,Hox基因不但影响胚胎发育,而且与成体生殖系统分化有关,在着床期子宫接受态的建立及子宫蜕膜反应的发生等生殖过程中起着重要的调节作用.  相似文献   

18.
A genomic clone containing hemoglobin genes was isolated from a species of the chironomid genus Kiefferulus. Eight genes, including an apparent pseudogene, were sequenced and the amino acid sequences of the putative proteins were determined. By comparison to the previously described hemoglobins in the sister-genus Chironomus, they were identified as members of the dimeric Hb VIIB group. The results indicate that the existence of clusters of hemoglobin genes may be a common feature in chironomids and not just confined to Chironomus. The Kiefferulus genes show greatest similarity of amino acid sequence to Hb VIIB-7 from the Chironomus cluster. The results suggest that the ancestral cluster contained at least two gene types, one of which gave rise to VIIB-7 and the Kiefferulus genes while the other gave rise to the other Chironomus VIIB genes. Both clusters appear to have increased in size by duplication or unequal crossing over since the separation of the genera. It also appears that an unrelated gene present in the Chironomus cluster, Hb-Y, arose from a completely independent origin with no apparent equivalent gene anywhere in the genome of Kiefferulus or some other Chironomus species. Correspondence to: J. Martin  相似文献   

19.
Ponce R 《Genetica》2007,131(3):315-324
Transposable elements comprise a considerable part of eukaryotic genomes, and there is increasing evidence for their role in the evolution of genomes. The number of active transposable elements present in the host genome at any given time is probably small relative to the number of elements that no longer transpose. The elements that have lost the ability to transpose tend to evolve neutrally. For example, non-LTR retrotransposons often become 5′ truncated due to their own transposition mechanism and hence lose their ability to transpose. The resulting transposons can be characterized as “dead-on-arrival” (DOA) elements. Because they are abundant and ubiquitous, and evolve neutrally in the location where they were inserted, these DOA non-LTR elements make a useful tool to date molecular events. There are four copies of a “dead-on-arrival” RT1C element on the recently formed Sdic gene cluster of Drosophila melanogaster, that are not present in the equivalent region of the other species of the melanogaster subgroup. The life history of the RT1C elements in the genome of D. melanogaster was used to determine the insertion chronology of the elements in the cluster and to date the duplication events that originated this cluster.  相似文献   

20.
Hox and ParaHox genes are implicated in axial patterning of cnidarians and bilaterians, and are thought to have originated by tandem duplication of a single ProtoHox gene followed by duplication of the resultant gene cluster. It is unclear what the ancestral role of Hox/ParaHox genes was before the divergence of Cnidaria and Bilateria, or what roles the postulated ProtoHox gene(s) played. Here we describe the full coding region, spatial expression and function of Trox-2, the single Hox/ParaHox-type gene identified in Trichoplax adhaerens (phylum Placozoa) and either a candidate ProtoHox or a ParaHox gene. Trox-2 is expressed in a ring around the periphery of Trichoplax, in small cells located between the outer margins of the upper and lower epithelial cell layers. Inhibition of Trox-2 function, either by uptake of morpholino antisense oligonucleotides or by RNA interference, causes complete cessation of growth and binary fission. We speculate that Trox-2 functions within a hitherto unrecognized population of possibly multipotential peripheral stem cells that contribute to differentiated cells at the epithelial boundary of Trichoplax.Edited by D. Tautz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号