首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of insulin on phospholipid metabolism and generation of diacylglycerol (DAG) and on activation of protein kinase C in rat hepatocytes were compared to those of vasopressin and angiotension II. Insulin provoked increases in [3H]glycerol labeling of phosphatidic acid (PA), diacylglycerol (DAG), and other glycerolipids within 30 s of stimulation. Similar increases were also noted for vasopressin and angiotensin II. Corresponding rapid increases in DAG mass also occurred with all three hormones. As increases in [3H]DAG (and DAG mass) occurred within 30-60 s of the simultaneous addition of [3H]glycerol and hormone, it appeared that DAG was increased, at least partly, through the de novo synthesis of PA. That de novo synthesis of PA was increased is supported by the fact that [3H]glycerol labeling of total glycerolipids was increased by all three agents. Increases in [3H]glycerol labeling of lipids by insulin were not due to increased labeling of glycerol 3-phosphate, and were therefore probably due to activation of glycerol-3-phosphate acyltransferase. Unlike vasopressin, insulin did not increase the hydrolysis of inositol phospholipids. Insulin- and vasopressin-induced increases in DAG were accompanied by increases in cytosolic and membrane-associated protein kinase C activity. These findings suggest that insulin-induced increases in DAG may lead to increases in protein kinase C activity, and may explain some of the insulin-like effects of phorbol esters and vasopressin on hepatocyte metabolism.  相似文献   

2.
Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, we found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in [3H]glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 microM sangivamycin, an effective PKC inhibitor. Our results indicate that insulin increases DAG by pertussis toxin sensitive (PA synthesis de novo) and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.  相似文献   

3.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

4.
Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) were found to provoke increases in [3H]2-deoxyglucose uptake, diacylglycerol (DAG) generation and membrane-bound protein kinase C activity in BC3H-1 myocytes. These effects were similar to those provoked by insulin. The increases in DAG did not appear to be derived from hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol, but may have been derived from synthesis of phosphatidic acid de novo, and hydrolysis of phosphatidylcholine, as revealed by studies with [3H]glycerol and [3H]choline respectively. Accordingly, both EGF and IGF-I increased acute [3H]glycerol labelling of DAG (and other lipids) and [3H]choline labelling of phosphocholine. These labelling responses were similar in time course, suggesting that they are closely coupled. Our findings suggest that EGF and IGF-I, like insulin, increase DAG-protein kinase C signalling, apparently by activating co-ordinated lipid-synthesis and -hydrolysis responses, which are distinctly different from the PIP2-hydrolysis response.  相似文献   

5.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

6.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

7.
Rat liver mitochondria were incubated with [3H]glycerol 3-phosphate, ATP, CTP and coenzyme A allowing acylatin of glycerophosphate with endogenous fatty acids and the further conversion of labelled phosphatidic acid (PA) to diacylglycerol (DG), CDP-diacylglycerol (CDP-DG) and phosphatidylglycerol (PG). In these glycerolipids, the distribution of label among the individual molecular species was found to be similar, with 16:0-18:1, 16:0-18:2 and 18:0-18:2/16:0-16:0 being the main species. It was concluded that mitochondrial enzymes involved in the de novo synthesis of these glycerolipids exhibited no acyl selectivity for their substrates. The pattern of molecular species of mitochondrial PA, DG and CDP-DG closely approached that of the same glycerolipids synthesized de novo in isolated rat liver microsomes.  相似文献   

8.
Effects of ACTH on the production of diacylglycerol (DAG) and translocation of protein kinase C were studied in primary cultures of calf adrenal glomerulosa cells. To study DAG production two different labeling protocols were used: (a) cells were prelabeled for 3 days with [2-3H]glycerol before ACTH addition; (b) ACTH and [2-3 H]glycerol were added simultaneously to cells. In both cases, ACTH provoked rapid increases in the labeling of DAG which were maximal in 2 min, dose-dependent, and paralleled by increases in DAG mass. ACTH also increased the labeling of total glycerolipids including phosphatidic acid (PA), phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine and triacylglycerol. In both labeling protocols, the rates of increase in the labeling of DAG and PA were greater than those of other glycerolipids. Our results indicate that ACTH rapidly increases DAG, at least partly by stimulating the de novo synthesis of PA. In addition, we found that ACTH, like phorbol esters, stimulated the apparent translocation of immunoreactive protein kinase C from the cytosol to the membrane fraction.  相似文献   

9.
It is widely accepted that insulin action does not involve inositol phospholipid hydrolysis through the stimulation of a phosphatidylinositol-specific phospholipase C (PI-PLC). This consideration prompted us to investigate the insulin effect on the mechanism leading to the accumulation of diacylglycerol (DAG) and phosphatidic acid (PA) in rat hepatocytes. Basically, insulin induces: (i) a significant increase of both [3H]glycerol and fatty acid labelling of DAG; (ii) a significant increase of PA labelling preceding DAG labelling and paralleled by a decrease of phosphatidylcholine (PC) labelling. These observations, which suggest an insulin-dependent involvement of a phospholipase D, are strengthened by the increase of PC-derived phosphatidylethanol in presence of ethanol. Finally, the observation that the PA levels do not return to basal suggests that other mechanisms different from PC hydrolysis, such as the stimulation of direct synthesis of PA, may be activated.  相似文献   

10.
R H Foster  R V Farese 《Life sciences》1989,45(21):2015-2023
Effects of angiotensin II (AII) on diacylglycerol (DAG) synthesis were examined in calf adrenal glomerulosa cells. AII provoked rapid increases in [3H]glycerol-labeling and content of DAG. Effects on [3H]glycerol-labeling of DAG were observed both in cells prelabeled with [3H]glycerol for 60 minutes, and when AII and [3H]glycerol were added simultaneously. Increases in [3H] DAG labeling were associated with increases in total glycerolipid labeling, and in simultaneous addition experiments, were preceded by increased [3H] phosphatidic acid (PA) labeling. Labeling of glycerol-3-PO4, on the other hand, was not increased by AII, suggesting that increases in lipid labeling were not due to prior increases in precursor specific activity. ACTH, which does not increase the hydrolysis of inositol-phospholipids appreciably in this tissue, provoked increases in content and [3H]glycerol-labeling of DAG, which were only slightly less than those provoked by AII. Thus, part of the AII-induced increase in DAG may also be derived from sources other than inositol-phospholipids. Moreover, AII-induced increases in DAG appear to be at least partly derived from increased de novo synthesis of PA.  相似文献   

11.
Specific radioactivities of molecular species of phosphatidyl choline(PC), phosphatidyl ethanolamine(PE) and 1,2-diacylglycerol were determined in rabbit brain 15 and 30 min after intraventricular injection of 10OpCi of either [U-14C]glucose or [U-14C]glycerol. The rate of de nouo synthesis of glycerophospholipids and their molecular species could be determined after glycerol labelling, since 94.0–99.7% of 14C activity was recovered in glyceryl moieties of brain lipids. After injection of glucose radioactivity was measured in both glyccrol and acyl residues of lipids. High incorporation rates were measured in species of PC, PE and 1,2-diacylglycerol with oleic acid in position 2 and with palmitic, stearic or oleic acids in position 1. The conclusion may therefore be drawn that these molecular species were preferably synthesized de novo by selective acylation of glycerol 3-phosphate. The lowest specific activities were observed for 1,2-dipalmitoyl- and l-stearoyl-2- arachidonoyl-glycerol, -PC and -PE. These turnover rates point to incorporation of arachidonate, and probably also of palmitate in dipalmitoyl-PC, amounting to 20% of total PC, via deacylation-acylation- cycle.  相似文献   

12.
The incorporation of [14C]-glycerol 3-phosphate and [3H]-palmitate into phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and triacylglycerols by lung microsomes from ventilated and unventilated rabbits was measured. Unventilated lung microsomes showed an impairment of the "de novo" synthesis of phosphatidic acid and, therefore, a general decrease of glycerolipids synthesized from glycerol 3-phosphate. The incorporation of [3H]-palmitate into phosphatidic acid was considerably lower than the incorporation of [14C]-glycerol 3-phosphate by lung microsomes from both ventilated and unventilated rabbits, and the 3H/14C molar ratio did not change during incubation time. These observations suggest the preferential utilization of endogenous fatty acids by acyltransferases involved in the formation of phosphatidic acid. The activities of the enzymes implicated in the synthesis of phosphatidylcholine from lysophosphatidylcholine remained unchanged in lung from both ventilated and unventilated rabbits.  相似文献   

13.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

14.
We reported in a recent publication that hexadecylphosphocholine (HePC), a lysophospholipid analogue, reduces cell proliferation in HepG2 cells and at the same time inhibits the biosynthesis of phosphatidylcholine (PC) via CDP-choline by acting upon CTP:phosphocholine cytidylyltransferase (CT). We describe here the results of our study into the influence of HePC on other biosynthetic pathways of glycerolipids. HePC clearly decreased the incorporation of the exogenous precursor [1,2,3-3H]glycerol into PC and phosphatidylserine (PS) whilst increasing that of the neutral lipids diacylglycerol (DAG) and triacylglycerol (TAG). Interestingly, the uptake of L-[3-3H]serine into PS and other phospholipids remained unchanged by HePC and neither was the activity of either PS synthase or PS decarboxylase altered, demonstrating that the biosynthesis of PS is unaffected by HePC. We also analyzed the water-soluble intermediates and final product of the CDP-ethanolamine pathway and found that HePC caused an increase in the incorporation of [1,2-14C]ethanolamine into CDP-ethanolamine and phosphatidylethanolamine (PE) and a decrease in ethanolamine phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine cytidylyltransferase activity. Since PE can be methylated to give PC, we studied this process further and observed that HePC decreased the synthesis of PC from PE by inhibiting the PE N-methyltransferase activity. These results constitute the first experimental evidence that the inhibition of the synthesis of PC via CDP-choline by HePC is not counterbalanced by any increase in its formation via methylation. On the contrary, in the presence of HePC both pathways seem to contribute jointly to a decrease in the overall synthesis of PC in HepG2 cells.  相似文献   

15.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

16.
Effect of Light on the Metabolism of Lipids in the Rat Retina   总被引:1,自引:1,他引:0  
The effect of light on the in vitro incorporation of a variety of radioactive precursors into glycerolipids was tested in isolated retinas of albino rats. There was an increase in the incorporation of [2-3H]myo-inositol, 32Pi, [2-3H]glycerol, and [methyl-3H]choline into retinal phospholipids in light compared to that in darkness. [2-3H]myo-Inositol was incorporated primarily into phosphatidylinositol. 32Pi was incorporated primarily into the phosphoinositides, although there were significant increases in the specific activities of all retinal phospholipids in light compared to those in darkness. Likewise, [2-3H]glycerol incorporation into all retinal phospholipids and diglycerides was greater in light than in the dark. There was no effect of light on the incorporation of [2-3H]ethanolamine into phosphatidylethanolamine or of [3-3H]serine into phosphatidylserine, although these phospholipids were labeled to a greater extent in light with [2-3H]glycerol. There was no effect of light on the incorporation of [3H]palmitic acid into diglycerides and phospholipids, with the exception of phosphatidylinositol. Light also had no effect on the uptake of [2-3H]glycerol, [2-3H]inositol, or [methyl-3H]choline into the retina. We conclude from these studies that light stimulates the phosphoinositide effect in the rat retina. Although some of the results are consistent with a stimulation of de novo synthesis of all lipid classes, our studies with [3H]palmitate, [2-3H]ethanolamine, and [3-3H]serine do not support this conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The phagocytosis of beta-glucan particles by human neutrophils and the associated activation of NADPH O2- forming oxidase were accompanied by an increased hydrolysis of phosphoinositides by phospholipase C, hydrolysis of phosphatidylcholine by phospholipase D, accumulation of diglyceride (DG) mass, and [Ca2+]i rise. The reaction of phospholipid hydrolysis played a minor role in the formation of DG, which was mainly formed by de novo synthesis from glucose. The activation of this pathway was shown by the stimulation of the incorporation of [U-14C]glucose into DG, which occurred very rapidly after the challenge of neutrophils with beta-glucan particles. This DG derived from glucose was found almost completely as 1-acyl-2-acyl-glycerol (DAG). On the basis of the finding that phosphatidic acid was the precursor of DAG, an increase in the incorporation of [U-14C]acetate into DAG did not occur, and the [14C]radioactivity was in the glycerol backbone, the synthesis of DAG from [U-14C]glucose occurred very likely via dihydroxyacetone phosphate and glycerol 3-phosphate, stepwise acylation to phosphatidic acid, and dephosphorylation by phosphatidate phosphatase.  相似文献   

18.
Glycerophospholipid biosynthesis by the de novo pathway was assessed in mouse peritoneal macrophages by pulse-labeling with [U-14C]glycerol. Phosphatidylcholine (PC), which amounts to about 35% of total cellular phospholipids, exhibited the highest rate of glycerol uptake, followed by phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Remodeling of PC molecular species by deacylation/reacylation was established by determining the redistribution of glycerol label over 2 h after a 1 h pulse of [U-14C]glycerol and by determining incorporation of 18O from H2 18O-containing media. These data suggest that stearic and arachidonic acid enter PC primarily by the remodeling pathway but that small amounts of highly unsaturated molecular species, including 1,2-diarachidonoyl PC, are rapidly synthesized de novo, and subsequently remodeled or degraded. Treatment of the cells with the ionophore A23187 resulted in the selective enhancement of arachidonate turnover in PC, PI and neutral lipid, as well as enhanced de novo PI synthesis. [U-14C]Glycerol labeling experiments suggest that arachidonic acid liberated by Ca2+-dependent phospholipase A2 activity is also reacylated in part through de novo glycerolipid biosynthesis, leading to the formation and remodeling of 1,2-diarachidonoyl PC and other highly polyunsaturated molecular species.  相似文献   

19.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

20.
Untransformed BHK-21-c13 fibroblasts as well as 4 polyoma-transformed strains were incubated with D-[U-14C,3-3H]glucose. This substrate generates intracellular labeled glycerol, and also [4-3H]NADPH via the phosphogluconate oxidative pathway. The latter selectively transfers hydrogen to C-2 of glycerol in glycerolipid via the acyl dihydroxyacetone phosphate pathway. After incubation, the distribution of radioactivity and the ratios of 3H/14C at the three positions of recovered glycerol were determined in sn-glycerol 3-phosphate, saponifiable glycerolipids, alkyl ether glycerolipids, and plasmalogens. In each of the cell types examined, 3H in the sn-1 position of glycerol in the recovered ether-containing glycerolipids was negligible, yet this position contained most of the recovered 3H in sn-glycerol 3-phosphate and saponifiable glycerolipids. The 3H/14C ratio in position 2 of glycerol, measured at various incubation times, was from 5- to 200-fold greater in the saponifiable glycerolipids than in free sn-glycerol 3-phosphate. The ratio in position 2 of ether-containing glycerolipids was the same or greater than that in the saponifiable glycerolipids in all of the cell types employed. A similar pattern in the 3H/14C ratio was observed when BHK-21-c13 cells were incubated with D-[U-14C,1-3H]glucose. These observations demonstrate significant participation of the acyl dihydroxyacetone phosphate pathway in glycerolipid synthesis in BHK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号