首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the effects of changes in the prey frequency and abundance on prey selection among the four instars of Myzus persicae by the predator Macrolophus pygmaeus under laboratory conditions. The central hypothesis was that M. pygmaeus will become more selective as prey density increases. It was also observed that M. pygmaeus can occasionally abandon a prey item that had already been killed (non-consumptive prey mortality). It was assumed that the frequency of this behavior would increase with the prey size and prey density. For these purposes prey selection was evaluated by simultaneously presenting all instars of M. persicae to the predator in equal proportions and at increasing densities. M. pygmaeus showed a higher predation rate and a higher preference for smaller prey instars at all prey densities. However, if the predation rate by the predator is expressed in terms of biomass consumed, then biomass gain was higher when feeding on the larger instars of M. persicae. The prey selectivity was indicated by the total prey mortality (consumptive plus non-consumptive prey mortality) as well as by the non-consumptive prey mortality, was associated with relatively high prey densities, depending on the prey instar. Therefore, we argued that the predatory impact of M. pygmaeus on the various instars of the aphid depends not only on prey traits but also on their relative abundance in a patch. Observed decreases in biomass gain from larger prey were likely the result of high prey availability at densities before saturation, which might have caused confusion in the predator’s prey selection.  相似文献   

2.
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.  相似文献   

3.
The non-consumptive (or trait-mediated) effects of predators on prey are known to contribute substantially to the negative impact of insect predators on herbivorous insects. Our goal now is to understand what factors alter the relative importance of the consumptive (or density-mediated) and non-consumptive components of the total predator impact. This is important both for understanding the effects of predators in natural systems as well as for successfully manipulating predators for biological control in agriculture. In this study, we tested whether herbivore ontogeny influenced the contribution of consumptive and non-consumptive effects of a predator on herbivore survivorship and plant damage by the herbivores. We addressed these questions using the native plant Solanum ptychanthum Dunal (Solanaceae), the predator Podisus maculiventris Say (Heteroptera: Pentatomidae), and first-, third-, and fourth-instar Manduca sexta L. (Lepidoptera: Sphingidae). In field cage experiments, we found that first- and third-instar M. sexta were more vulnerable to predators compared to fourth instars. In the presence of predators, M. sexta caterpillars spent less time on feeding compared to caterpillars in the absence of predators. The amount of damage the plants received was reduced in the presence of the predator and the consumptive and non-consumptive components contributed approximately equally to this reduction. Thus, the non-consumptive component of the predator is important for all of the herbivore stages vulnerable to predation in our study. We conclude with a discussion of possible implications of considering non-consumptive effects of predators in biological control of agricultural pests.  相似文献   

4.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

5.
Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators   总被引:1,自引:0,他引:1  
Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.  相似文献   

6.
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.  相似文献   

7.
Hydrocarbons emitted by waggle-dancing honey bees are known to reactivate experienced foragers to visit known food sources. This study investigates whether these hydrocarbons also increase waggle-dance recruitment by observing recruitment and dancing behavior when the dance compounds are introduced into the hive. If the hydrocarbons emitted by waggle-dancing bees affect the recruitment of foragers to a food source, then the number of recruits arriving at a food source should be greater after introduction of dance compounds versus a pure-solvent control. This prediction was supported by the results of experiments in which recruits were captured at a feeder following introduction of dance-compounds into a hive. This study also tested two nonexclusive behavioral mechanism(s) by which the compounds might stimulate recruitment; 1) increased recruitment could occur by means of increasing the recruitment effectiveness of each dance and/or 2) increased recruitment could occur by increasing the intensity of waggle-dancing. These hypotheses were tested by examining video records of the dancing and recruitment behavior of individually marked bees following dance-compound introduction. Comparisons of numbers of dance followers and numbers of recruits per dance and waggle run showed no significant differences between dance-compound and solvent-control introduction, thus providing no support for the first hypothesis. Comparison of the number of waggle-dance bouts and the number of waggle runs revealed significantly more dancing during morning dance-compound introduction than morning solvent-control introduction, supporting the second hypothesis. These results suggest that the waggle-dance hydrocarbons play an important role in honey bee foraging recruitment by stimulating foragers to perform waggle dances following periods of inactivity.  相似文献   

8.
Predator–prey interactions are central to fitness as animals simultaneously avoid death and consume resources to ensure growth and reproduction. Along with direct effects, predators can also exert strong non-consumptive effects. For example, prey shift habitat use in the presence of predators, a potentially learned behavior. The impact of cognition on movement and predator interactions is largely unexplored despite evidence of learned responses to predation threat. We explore how learning and spatial memory influence predator–prey dynamics by introducing predators into a memory-driven movement modeling framework. To model various aspects of risk, we vary predator behavior: their persistence and spatial correlation with the prey’s resources. Memory outperforms simpler movement processes most in patchy environments with more predictable predators that are more easily avoided once learned. In these cases, memory aids foragers in managing the food–safety trade-off. For example, particular parameterizations of the predation memory reduce encounters while maintaining consumption. We found that non-consumptive effects are highest in landscapes of concentrated, patchy resources. These effects are intensified when predators are highly correlated with the forager’s resources. Smooth landscapes provide more opportunities for foragers to simultaneously consume resources and avoid predators. Predators are able to effectively guard all resources in very patchy landscapes. These non-consumptive effects are also seen with the shift away from the best quality habitat compared to foraging in a predator-free environment.  相似文献   

9.
1. The ability of pollinating insects to discover and evade their predators can affect plant–pollinator mutualisms and have cascading ecosystem effects. Pollinators will avoid flowers with predators, but it is not clear how far away they will move to continue foraging. If these distances are relatively small, the impact of predators on the plant–pollinator mutualism may be lessened. The plant could continue to receive some pollination, and pollinators would reduce the time and energy needed to search for another patch. 2. A native crab spider, Xysticus elegans, was placed on one cluster in a small array of Baccharis pilularis inflorescence clusters, and the preferred short‐range foraging distances of naturally visiting pollinators was determined. 3. Nearly all pollinator taxa (honey bees, wasps, other Hymenoptera, and non‐bombyliid flies) spent less time foraging on the predator cluster. 4. The key result of this study is that inflorescences within 90 mm of the crab spider were avoided by visiting honey bees and wasps, which spent three‐ and 18‐fold more time, respectively, foraging on more distant flower clusters. 5. Whether honey bees can use olfaction to detect spiders was then tested, and this study provides the first demonstration that honey bees will avoid crab spider odour alone at a food source.  相似文献   

10.
Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world’s largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational “stop signal,” which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet) had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet) and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest) were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager). Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.  相似文献   

11.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

12.
Biogenic amines are widely characterized in pathways evaluating reward and punishment, resulting in appropriate aversive or appetitive responses of vertebrates and invertebrates. We utilized the honey bee model and a newly developed spatial avoidance conditioning assay to probe effects of biogenic amines octopamine (OA) and dopamine (DA) on avoidance learning. In this new protocol non-harnessed bees associate a spatial color cue with mild electric shock punishment. After a number of experiences with color and shock the bees no longer enter the compartment associated with punishment. Intrinsic aspects of avoidance conditioning are associated with natural behavior of bees such as punishment (lack of food, explosive pollination mechanisms, danger of predation, heat, etc.) and their association to floral traits or other spatial cues during foraging. The results show that DA reduces the punishment received whereas octopamine OA increases the punishment received. These effects are dose-dependent and specific to the acquisition phase of training. The effects during acquisition are specific as shown in experiments using the antagonists Pimozide and Mianserin for DA and OA receptors, respectively. This study demonstrates the integrative role of biogenic amines in aversive learning in the honey bee as modeled in a novel non-appetitive avoidance learning assay.  相似文献   

13.
The ability of prey to escape predation often lies in the occurrence and efficacy of their predator avoidance and antipredator behaviors, which are often coupled with specialized morphology. How the use and efficacy of these behaviors change throughout ontogeny may be indicative of the vulnerability and ecological roles these animals experience throughout their lives. We examined the antipredator behavior of a large dragonfly nymph, Anax junius, from a historically fishless pond where these animals have traditionally been classified as top predators. These dragonfly nymphs displayed a series of distinct aggressive antipredator behaviors when grasped that involved stabbing with lateral and posterior spines and seizing with labial hooks. Larger (older) nymphs displayed these aggressive behaviors significantly more than smaller (younger) animals in simulated predation trials. During encounters with live larval salamander predators (Ambystoma tigrinum), all large nymphs, but only 12.5% of small nymphs successfully escaped predation attempts by the amphibians through the use of antipredator behavior. Large nymphs were also significantly more active than smaller nymphs in the presence of salamander larvae. Despite often being considered top predators in fishless ponds, our study demonstrates that their true role is more complex, depending on ontogeny and body size, and that effective antipredator behavior is likely necessary for survival in these systems.  相似文献   

14.
We hypothesize two functions of the vibration signal (dorsal ventral abdominal vibration = DVAV) during swarming in honey bees: 1. it enhances recruitment to the specific sites advertised by the waggle dancers which also perform the vibration signal; and 2. it acts as a nonspecific modulatory signal to stimulate activity in other bees. The stimulation of activity invoked by the second hypothesis might include increasing nest-site scouting and dance following early in the house-hunting process or rousing quiescent bees to prepare them for lift-off late in the process, or both. In studies of neotropical African bee swarms in Costa Rica and European bees in California we tested these hypotheses by looking for associations between production of vibration signals by nest-site recruiters and site attractiveness (indicated by which site was ultimately chosen and by distance from the swarm since swarms may have a distance preference). Overall, bees dancing for the chosen sites performed vibration signals to the same extent as those dancing for the other sites. There were no distance differences between sites whose scouts did and did not vibrate other bees. These results are inconsistent with the hypothesis that the vibration signal enhances recruitment to especially high quality sites and they support the hypothesis that it plays a general excitatory role in the context of house hunting by swarming bees.  相似文献   

15.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

16.
Mammals scent mark their territories to advertise occupancyand ownership. However, signaling with scent for territorialdefense can have a negative effect by advertising an individual'spresence and location to predators. In this study, we measuredresponses to a simulated territorial intrusion by conspecificadult male Eurasian beavers (Castor fiber) either in the localizedpresence or in the absence of odor of a predator to test thehypothesis that the territorial defense of free-living beaverswould be disrupted by the presence of predation risk in theirnatural environment. We predicted that beavers would significantlyreduce their willingness to countermark intruder's scent inthe presence of the scent of predators (wolf [Canis lupus] andlynx [Lynx lynx]), compared with a control (no odor), as responsesare in general stronger to predator scent marks than nonpredatorscent. Therefore, we also predicted that the effects of nonpredatorymammal scent (neophobic control) (eland [Taurotragus oryx] andhorse [Equus cabalus]) are to be expected somewhere in betweenthe effects of the predator odor and a control. Our resultssuggest that both predator and nonpredator scents reduce beaversresponse to a simulated intruder's scent mounds and thereforedisrupt their territorial defense. However, predator scent hada stronger effect than nonpredator scent. Beavers may thereforebe at great risk on territories with predators present becauseof the trade-off between predator avoidance and territorialdefense. Our study demonstrates the potential of predation riskas a powerful agent of counterselection on olfactory signalingbehavior.  相似文献   

17.
Animals learn to associate sensory cues with the palatability of food in order to avoid bitterness in food (a common sign of toxicity). Associations are important for active foraging predators to avoid unpalatable prey and to invest energy in searching for palatable prey only. However, it has been suggested that sit-and-wait predators might rely on the opportunity that palatable prey approach them by chance: the most efficient strategy could be to catch every available prey and then decide whether to ingest them or not. In the present study, we investigated avoidance learning in a sit-and-wait predator, the praying mantis (Tenodera aridifolia). To examine the effects of conspicuousness and novelty of prey on avoidance learning, we used three different prey species: mealworms (novel prey), honeybees (novel prey with conspicuous signals) and crickets (familiar prey). We sequentially presented the prey species in pairs and made one of them artificially bitter. In the absence of bitterness, the mantises consumed bees and crickets more frequently than mealworms. When the prey were made bitter, the mantises still continued to attack bitter crickets as expected. However, they reduced their attacks on bitter mealworms more than on bitter bees. This contrasts with the fact that conspicuous signals (e.g. coloration in bees) facilitate avoidance learning in active foraging predators. Surprisingly, we found that the bitter bees were totally rejected after an attack whereas bitter mealworms were partially eaten (~35%). Our results highlight the fact that the mantises might maintain a selection pressure on bees, and perhaps on aposematic species in general.  相似文献   

18.
We studied avoidance, by four amphibian prey species (Rana luteiventris, Ambystoma macrodactylum, Pseudacris regilla, Tarichia granulosa), of chemical cues associated with native garter snake (Thamnophis elegans) or exotic bullfrog (R. catesbeiana) predators. We predicted that avoidance of native predators would be most pronounced, and that prey species would differ in the intensity of their avoidance based on relative levels of vulnerability to predators in the wild. Adult R. luteiventris (presumably high vulnerability to predation) showed significant avoidance of chemical cues from both predators, A. macrodactylum (intermediate vulnerability to predation) avoided T. elegans only, while P. regilla (intermediate vulnerability to predation) and T. granulosa (low vulnerability to predation) showed no avoidance of either predator. We assessed if predator avoidance was innate and/or learned by testing responses of prey having disparate levels of prior exposure to predators. Wild‐caught (presumably predator‐exposed) post‐metamorphic juvenile R. luteiventris and P. regilla avoided T. elegans cues, while laboratory‐reared (predator‐naive) conspecifics did not; prior exposure to R. catesbeiana was not related to behavioural avoidance among adult or post‐metamorphic juvenile wild‐reared A. macrodactylum and P. regilla. These results imply that (i) some but not all species of amphibian prey avoid perceived risk from garter snake and bullfrog predators, (ii) the magnitude of this response probably differs according to prey vulnerability to predation in the wild, and (iii) avoidance tends to be largely learned rather than innate. Yet, the limited prevalence and intensity of amphibian responses to predation risk observed herein may be indicative of either a relatively weak predator–prey relationship and/or the limited importance of predator chemical cues in this particular system.  相似文献   

19.
Abstract.  1. The hypothesis that size-selective predation and species-specific prey behaviours facilitate the coexistence between larvae of invasive Aedes albopictus (Skuse) and U.S.A.-native Ochlerotatus triseriatus (Say) was tested experimentally with the predator Corethrella appendiculata (Grabham).
2. Larval behaviours associated with a higher risk of predation were identified, and prey behavioural responses were tested in either the physical presence of predators or in water containing predation cues. Larvae that thrashed on container bottoms had a higher risk of being captured by fourth instar C. appendiculata than did larvae resting on the water surface. Ochlerotatus triseriatus , but not A. albopictus , adopted low-risk behaviours in response to water-borne cues to predation. Both prey species reduced risky behaviours in the physical presence of the predator, but O. triseriatus showed a stronger response.
3. The vulnerability of 2nd and 3rd instar prey to predation was compared, and behavioural responses were correlated with prey vulnerability. Second instars of both species were more vulnerable to predation by C. appendiculata than were 3rd instars, and the 3rd instar A. albopictus was more vulnerable than O. triseriatus of the same stage. All instars of O. triseriatus showed a similar reduction of risky behaviours in response to the presence of C. appendiculata despite 4th instar prey being relatively invulnerable to size-selective predation.
4. Weaker predator avoidance, coupled with superior competitive ability, of invasive A. albopictus is likely to contribute to its coexistence with O. triseriatus in containers of the south-eastern U.S.A., where C. appendiculata can be abundant.  相似文献   

20.
Recent anthropogenic increases in algal turbidity in aquatic habitats have been suggested to affect the ability of fish to assess predation risk. We investigated the response of feeding three‐spined sticklebacks (Gasterosteus aculeatus) exposed to a sudden appearance of an avian predator (the silhouette of common tern, Sterna hirundo), under clear and turbid water conditions. As stickleback use social cues to aid in predator avoidance, we also tested whether turbidity affected social information use by manipulating group size. We found that in turbid water, a smaller proportion of fish would escape from the feeding area, that the distance escaped was shorter and that a smaller proportion of fish fled into shelter. Larger group size was associated with longer escape distance and greater shelter use. However, there was no effect of group size on the proportion of fish that escaped the arena. The effect of group size was similar for turbid and clear water. Our finding that the fish showed a weaker antipredator response suggests that turbidity impedes their risk assessment capability. However, the sticklebacks were still able to benefit of the social facilitation provided by being in a group. This suggests that algal turbidity has detrimental effects on the ability of sticklebacks to assess predation risk from avian predators in shallow water. An implication is that in shallow water fish may be more vulnerable to avian predation under turbid conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号