首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear.

Methods

We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥37.5°C) and parasitemia (≥2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored.

Results

After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode.

Conclusions

Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are needed to determine whether co-infection induces immunomodulatory mechanisms that protect against febrile malaria or whether genetic, behavioral, or environmental factors not accounted for here explain these findings.  相似文献   

2.

Background

The global distribution map of schistosomiasis shows a large overlap of Schistosoma haematobium- and S. mansoni-endemic areas in Africa. Yet, little is known about the consequences of mixed Schistosoma infections for the human host. A recent study in two neighboring co-endemic communities in Senegal indicated that infection intensities of both species were higher in mixed than in single infections. Here, we investigated the relationship between mixed Schistosoma infections and morbidity in the same population. So far, this has only been studied in children.

Methods

Schistosoma infection was assessed by microscopy. Schistosoma-specific morbidity was assessed by ultrasound according to WHO guidelines. Multivariable logistic regression models were used to identify independent risk factors for morbidity.

Principal Findings

Complete parasitological and morbidity data were obtained from 403 individuals. Schistosoma haematobium-specific bladder morbidity was observed in 83% and S. mansoni-specific hepatic fibrosis in 27% of the participants. Bladder morbidity was positively associated with S. haematobium infection intensity (OR = 1.9 (95% CI 1.3–2.9) for a 10-fold increase in intensity). Moreover, people with mixed infections tended to have less bladder morbidity than those with single S. haematobium infections (OR = 0.3 (95% CI 0.1–1.1)). This effect appeared to be related to ectopic S. mansoni egg elimination in urine. Hepatic fibrosis on the other hand was not related to S. mansoni infection intensity (OR = 0.9 (95% CI 0.6–1.3)), nor to mixed infections (OR = 1.0 (95% CI 0.7–1.7)).

Conclusions/Significance

This is the first population-wide study on the relationship between mixed Schistosoma infections and morbidity. Mixed infections did not increase the risk of S. mansoni-associated morbidity. They even tended to reduce the risk of S. haematobium-associated morbidity, suggesting a protective effect of S. mansoni infection on bladder morbidity. These unexpected results may have important consequences for schistosomiasis control in co-endemic areas and warrant further investigation.  相似文献   

3.

Background

Schistosoma mansoni and S. haematobium are co-endemic in many areas in Africa. Yet, little is known about the micro-geographical distribution of these two infections or associated disease within such foci. Such knowledge could give important insights into the drivers of infection and disease and as such better tailor schistosomiasis control and elimination efforts.

Methodology

In a co-endemic farming community in northern Senegal (346 children (0–19 y) and 253 adults (20–85 y); n = 599 in total), we studied the spatial distribution of S. mansoni and S. haematobium single and mixed infections (by microscopy), S. mansoni-specific hepatic fibrosis, S. haematobium-specific urinary tract morbidity (by ultrasound) and water contact behavior (by questionnaire). The Kulldorff''s scan statistic was used to detect spatial clusters of infection and morbidity, adjusted for the spatial distribution of gender and age.

Principal Findings

Schistosoma mansoni and S. haematobium infection densities clustered in different sections of the community (p = 0.002 and p = 0.023, respectively), possibly related to heterogeneities in the use of different water contact sites. While the distribution of urinary tract morbidity was homogeneous, a strong geospatial cluster was found for severe hepatic fibrosis (p = 0.001). Particularly those people living adjacent to the most frequently used water contact site were more at risk for more advanced morbidity (RR = 6.3; p = 0.043).

Conclusions/Significance

Schistosoma infection and associated disease showed important micro-geographical heterogeneities with divergent patterns for S. mansoni and S. haematobium in this Senegalese community. Further in depth investigations are needed to confirm and explain our observations. The present study indicates that local geospatial patterns should be taken into account in both research and control of schistosomiasis. The observed extreme focality of schistosomiasis even at community level, suggests that current strategies may not suffice to move from morbidity control to elimination of schistosomiasis, and calls for less uniform measures at a finer scale.  相似文献   

4.

Background

Anaemia reduces cognitive potential in school children, retards their growth and predisposes them to other diseases. As there is a paucity of data on the current burden of P. falciparum, S. mansoni and soil transmitted helminths (STH) infections and their correlation with schoolchildren’s anemia in the Democratic Republic of Congo (DRC), we collect these data.

Methods

This study reports baseline data collected from a randomized controlled trial investigating the impact of IPT with SP and SP-PQ on anemia and malaria morbidity in Congolese schoolchildren (Trial registration: NCT01722539; PACTR201211000449323). S. mansoni and STH infections were assessed using kato-katz technique. Malaria infection and hemoglobin concentration were assessed using Blood smear and Hemocontrol device, respectively.

Results

A total of 616 primary schoolchildren from 4 to 13 years old were enrolled in the study. The prevalence of Plasmodium spp. infection was 18.5% (95%CI:15.6–21.9). Amongst those infected, 24 (21%), 40 (35.1%), 40 (35.1%), 10 (8.8%), had light, moderate, heavy, very high malaria parasite density, respectively. Above 9 years of age (p = 0.02), male and history of fever (p = 0.04) were both associated with malaria infection. The overall prevalence of S. mansoni infection was 6.4% (95%CI:4.4–9.1). Girls were associated with S. mansoni infection (p = 0.04). T. trichiura was the most prevalent STH infection (26.3%), followed by A. lumbricoides (20.1%). Co-infection with malaria-S. mansoni and malaria-STH was, respectively, 1.5% (CI95%:0.7–3.3) and 6.4% (CI95% 4.4–9.1). The prevalence of anemia was found to be 41.6% (95%CI:37.7–45.6) and anemia was strongly related with Plasmodium ssp infection (aOR:4.1; CI95%:2.6–6.5;p<0.001) and S. mansoni infection (aOR:3.3;CI95%:1.4–7.8;p<0.01).

Conclusion

Malaria and S. mansoni infection were strongly associated with high prevalence of anemia in schoolchildren. Therefore, specific school-based interventions, such as intermittent preventive treatment or prophylaxis, LLITN distribution, anthelminthic mass treatment and micronutrient supplementation are needed to improve school children’s health.  相似文献   

5.

Background

In Africa, many areas are co-endemic for the two major Schistosoma species, S. mansoni and S. haematobium. Epidemiological studies have suggested that host immunological factors may play an important role in co-endemic areas. As yet, little is known about differences in host immune responses and possible immunological interactions between S. mansoni and S. haematobium in humans. The aim of this study was to analyze host cytokine responses to antigens from either species in a population from a co-endemic focus, and relate these to S. mansoni and S. haematobium infection.

Methodology

Whole blood cytokine responses were investigated in a population in the north of Senegal (n = 200). Blood was stimulated for 72 h with schistosomal egg and adult worm antigens of either Schistosoma species. IL-10, IL-5, IFN-γ, TNF-α, and IL-2 production was determined in culture supernatants. A multivariate (i.e. multi-response) approach was used to allow a joint analysis of all cytokines in relation to Schistosoma infection.

Principal Findings

Schistosoma haematobium egg and worm antigens induced higher cytokine production, suggesting that S. haematobium may be more immunogenic than S. mansoni. However, both infections were strongly associated with similar, modified Th2 cytokine profiles.

Conclusions/Significance

This study is the first to compare S. mansoni and S. haematobium cytokine responses in one population residing in a co-endemic area. These findings are in line with previous epidemiological studies that also suggested S. haematobium egg and worm stages to be more immunogenic than those of S. mansoni.  相似文献   

6.

Background

Malaria and intestinal helminths co-infection are major public health problems particularly among school age children in Nigeria. However the magnitude and possible interactions of these infections remain poorly understood. This study determined the prevalence, impact and possible interaction of Plasmodium falciparum and intestinal helminths co-infection among school children in rural communities of Kwara State, Nigeria.

Methods

Blood, urine and stool samples were collected from 1017 primary school pupils of ages 4–15 years. Stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal helminths infection. Urine samples were analyzed using sedimentation method for Schistosoma haematobium. Plasmodium falciparum was confirmed by microscopy using thick and thin blood films methods and packed cell volume (PCV) was determined using hematocrit reader. Univariate analysis and chi-square statistical tests were used to analyze the data.

Results

Overall, 61.2% of all school children had at least an infection of either P. falciparum, S. haematobium, or intestinal helminth. S. haematobium accounted for the largest proportion (44.4%) of a single infection followed by P. falciparum (20.6%). The prevalence of malaria and helminth co-infection in the study was 14.4%. Four species of intestinal helminths were recovered from the stool samples and these were hookworm (22.5%), Hymenolepis species (9.8%), Schistosoma mansoni (2.9%) and Enterobius vermicularis (0.6%). The mean densities of P. falciparum in children co-infected with S. haematobium and hookworm were higher compared to those infected with P. falciparum only though not statistically significant (p = 0.062). The age distribution of both S. haematobium (p = 0.049) and hookworm (p = 0.034) infected children were statistically significant with the older age group (10–15 years) recording the highest prevalence of 47.2% and 25% respectively. Children who were infected with S. haematobium (RR = 1.3) and hookworm (RR = 1.4) have equal chances of being infected with P. falciparum as children with no worm infection. On the other hand children infected with Hymenolepis spp. (p<0.0001) are more likely to be infected with P. falciparum than Hymenolepis spp. uninfected children (RR = 2.0)

Conclusions

These findings suggest that multiple parasitic infections are common in school age children in rural communities of Kwara State Nigeria. The Hymenolepis spp. induced increase susceptibility to P. falciparum could have important consequences on how concurrent infections affect the expression or pathogenesis of these infections.  相似文献   

7.

Background

In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists.

Materials and Methods

We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period.

Discussion

Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation.

Conclusion

The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies.  相似文献   

8.

Background

Within sub-Saharan Africa, helminth and malaria infections cause considerable morbidity in HIV-positive pregnant women and their offspring. Helminth infections are also associated with a higher risk of mother-to-child HIV transmission. The aim of this study was to determine the prevalence of, and the protective and risk factors for helminth and malaria infections in pregnant HIV-positive Rwandan women receiving anti-retroviral therapy (ART).

Methodology and principle findings

Pregnant females (n = 980) were recruited from health centres in rural and peri-urban locations in the central and eastern provinces of Rwanda. Helminth infection was diagnosed using the Kato Katz method whilst the presence of Plasmodium falciparum was identified from blood smears. The prevalence of helminth infections was 34.3%; of malaria 13.3%, and of co-infections 6.6%. Helminth infections were more common in rural (43.1%) than peri-urban (18.0%; p<0.0005) sites. A CD4 count ≤350 cells/mm3 was associated with a higher risk of helminth infections (odds ratio, 3.39; 95% CIs, 2.16–5.33; p<0.0005) and malaria (3.37 [2.11–5.38]; p<0.0005) whilst helminth infection was a risk factor for malaria infection and vice versa. Education and employment reduced the risk of all types of infection whilst hand washing protected against helminth infection (0.29 [0.19–0.46]; p<0.0005);). The TDF-3TC-NVP (3.47 [2.21–5.45]; p<0.0005), D4T-3TC-NVP (2.47 [1.27–4.80]; p<0.05) and AZT-NVP (2.60 [1.33–5.08]; p<0.05) regimens each yielded higher helminth infection rates than the AZT-3TC-NVP regimen. Anti-retroviral therapy had no effect on the risk of malaria.

Conclusion/significance

HIV-positive pregnant women would benefit from the scaling up of de-worming programs alongside health education and hygiene interventions. The differential effect of certain ART combinations (as observed here most strongly with AZT-3TC-NVP) possibly protecting against helminth infection warrants further investigation.  相似文献   

9.

Background

Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial.

Methods

Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes.

Results

During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes.

Conclusion

PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum.

Trial Registration

ClinicalTrials.gov NCT00666380  相似文献   

10.

Background

In tropical Africa, where malaria is highly endemic, low grade infections are asymptomatic and the diagnosis of clinical malaria is usually based on parasite density. Here we investigate how changes in malaria control and endemicity modify diagnostic criteria of Plasmodium falciparum attacks.

Methods and Findings

Parasitological and clinical data from the population of Dielmo, Senegal, monitored during 20 years, are analyzed in a random-effect logistic regression model to investigate the relationship between the level of parasitemia and risk of fever. Between 1990 and 2010, P. falciparum prevalence in asymptomatic persons declined from 85% to 1% in children 0–3 years and from 34% to 2% in adults ≥50 years. Thresholds levels of parasitemia for attributing fever episodes to malaria decreased by steps in relation to control policies. Using baseline threshold during following periods underestimated P. falciparum attacks by 9.8–20.2% in children and 18.9–40.2% in adults. Considering all fever episodes associated with malaria parasites as clinical attacks overestimated P. falciparum attacks by 42.2–68.5% in children and 45.9–211.7% in adults.

Conclusions

Malaria control modifies in all age-groups the threshold levels of parasitemia to be used for the assessment of malaria morbidity and to guide therapeutic decisions. Even under declining levels of malaria endemicity, the parasite density method must remain the reference method for distinguishing malaria from other causes of fever and assessing trends in the burden of malaria.  相似文献   

11.

Background

Diagnosis of urogenital schistosomiasis by microscopy and serological tests may be elusive in travelers due to low egg load and the absence of seroconversion upon arrival. There is need for a more sensitive diagnostic test. Therefore, we developed a real-time PCR targeting the Schistosoma haematobium-specific Dra1 sequence.

Methodology/Principal Findings

The PCR was evaluated on urine (n = 111), stool (n = 84) and serum samples (n = 135), and one biopsy from travelers and migrants with confirmed or suspected schistosomiasis. PCR revealed a positive result in 7/7 urine samples, 11/11 stool samples and 1/1 biopsy containing S. haematobium eggs as demonstrated by microscopy and in 22/23 serum samples from patients with a parasitological confirmed S. haematobium infection. S. haematobium DNA was additionally detected by PCR in 7 urine, 3 stool and 5 serum samples of patients suspected of having schistosomiasis without egg excretion in urine and feces. None of these suspected patients demonstrated other parasitic infections except one with Blastocystis hominis and Entamoeba cyst in a fecal sample. The PCR was negative in all stool samples containing S. mansoni eggs (n = 21) and in all serum samples of patients with a microscopically confirmed S. mansoni (n = 22), Ascaris lumbricoides (n = 1), Ancylostomidae (n = 1), Strongyloides stercoralis (n = 1) or Trichuris trichuria infection (n = 1). The PCR demonstrated a high specificity, reproducibility and analytical sensitivity (0.5 eggs per gram of feces).

Conclusion/Significance

The real-time PCR targeting the Dra1 sequence for S. haematobium-specific detection in urine, feces, and particularly serum, is a promising tool to confirm the diagnosis, also during the acute phase of urogenital schistosomiasis.  相似文献   

12.

Background

Helminth infection is common in malaria endemic areas, and an interaction between the two would be of considerable public health importance. Animal models suggest that helminth infections may increase susceptibility to malaria, but epidemiological data has been limited and contradictory.

Methodology/Principal Findings

In a vaccine trial, we studied 387 one- to six-year-old children for the effect of helminth infections on febrile Plasmodium falciparum malaria episodes. Gastrointestinal helminth infection and eosinophilia were prevalent (25% and 50% respectively), but did not influence susceptibility to malaria. Hazard ratios were 1 for gastrointestinal helminth infection (95% CI 0.6–1.6) and 0.85 and 0.85 for mild and marked eosinophilia, respectively (95% CI 0.56–1.76 and 0.69–1.96). Incident rate ratios for multiple episodes were 0.83 for gastro-intestinal helminth infection (95% CI 0.5–1.33) and 0.86 and 0.98 for mild and marked eosinophilia (95% CI 0.5–1.4 and 0.6–1.5).

Conclusions/Significance

There was no evidence that infection with gastrointestinal helminths or urinary schistosomiasis increased susceptibility to Plasmodium falciparum malaria in this study. Larger studies including populations with a greater prevalence of helminth infection should be undertaken.  相似文献   

13.

Background

Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of anaemia cases in preschool children for 2011.

Methods and Findings

National cross-sectional household-based demographic health surveys were conducted in 7,147 children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children, the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild, moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm coinfections, respectively. A large spatial cluster of low mean Hb (<80 g/l) and maximal risk of anaemia (>95%) was predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–4 y are anaemic in the three study countries.

Conclusions

By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool children in Africa. Please see later in the article for the Editors'' Summary  相似文献   

14.

Background

The Kato-Katz technique is widely used for the diagnosis of Schistosoma mansoni, but shows low sensitivity in light-intensity infections. We assessed the accuracy of a commercially available point-of-care circulating cathodic antigen (POC-CCA) cassette test for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration.

Methodology

A 3-week longitudinal survey with a treatment intervention was conducted in Azaguié, south Côte d''Ivoire. Overall, 242 preschoolers (age range: 2 months to 5.5 years) submitted two stool and two urine samples before praziquantel administration, and 86 individuals were followed-up posttreatment. Stool samples were examined with duplicate Kato-Katz thick smears for S. mansoni. Urine samples were subjected to POC-CCA cassette test for S. mansoni, and a filtration method for S. haematobium diagnosis.

Principal Findings

Before treatment, the prevalence of S. mansoni, as determined by quadruplicate Kato-Katz, single CCA considering ‘trace’ as negative (t−), and single CCA with ‘trace’ as positive (t+), was 23.1%, 34.3% and 64.5%, respectively. Using the combined results (i.e., four Kato-Katz and duplicate CCA(t−)) as diagnostic ‘gold’ standard, the sensitivity of a single Kato-Katz, a single CCA(t−) or CCA(t+) was 28.3%, 69.7% and 89.1%, respectively. Three weeks posttreatment, the sensitivity of a single Kato-Katz, single CCA(t−) and CCA(t+) was 4.0%, 80.0% and 84.0%, respectively. The intensity of the POC-CCA test band reaction was correlated with S. mansoni egg burden (odds ratio = 1.2, p = 0.04).

Conclusions/Significance

A single POC-CCA cassette test appears to be more sensitive than multiple Kato-Katz thick smears for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration. The POC-CCA cassette test can be recommended for the rapid identification of S. mansoni infections before treatment. Additional studies are warranted to determine the usefulness of POC-CCA for assessing drug efficacy and monitoring the impact of control interventions.  相似文献   

15.

Background

An increasing risk of Schistosoma mansoni infection has been observed around Lake Victoria, western Kenya since the 1970s. Understanding local transmission dynamics of schistosomiasis is crucial in curtailing increased risk of infection.

Methodology/Principal Findings

We carried out a cross sectional study on a population of 310 children from eight primary schools. Overall, a total of 238 (76.8%) children were infected with S. mansoni, while seven (2.3%) had S. haematobium. The prevalence of hookworm, Trichuris trichiura and Ascaris lumbricoides were 6.1%, 5.2% and 2.3%, respectively. Plasmodium falciparum was the only malaria parasite detected (12.0%). High local population density within a 1 km radius around houses was identified as a major independent risk factor of S. mansoni infection. A spatial cluster of high infection risk was detected around the Mbita causeway following adjustment for population density and other potential risk factors.

Conclusions/Significance

Population density was shown to be a major factor fuelling schistosome infection while individual socio-economic factors appeared not to affect the infection risk. The high-risk cluster around the Mbita causeway may be explained by the construction of an artificial pathway that may cause increased numbers of S. mansoni host snails through obstruction of the waterway. This construction may have, therefore, a significant negative impact on the health of the local population, especially school-aged children who frequently come in contact with lake water.  相似文献   

16.

Background

Human co-infection with malaria and helmimths is ubiquitous throughout Africa. Nevertheless, its public health significance on malaria severity remains poorly understood.

Methodology/Principal Findings

To contribute to a better understanding of epidemiology and control of this co-infection in Cameroon, a cross-sectional study was carried out to assess the prevalence of concomitant intestinal geohelminthiasis and malaria, and to evaluate its association with malaria and anaemia in Nkassomo and Vian. Finger prick blood specimens from a total of 263 participants aged 1–95 years were collected for malaria microscopy, assessment of haemoglobin levels, and molecular identification of Plasmodium species by PCR. Fresh stool specimens were also collected for the identification and quantification of geohelminths by the Kato-Katz method. The prevalence of malaria, geohelminths, and co-infections were 77.2%, 28.6%, and 22.1%, respectively. Plasmodium falciparum was the only malaria parasite species identified with mean parasite density of 111 (40; 18,800) parasites/µl of blood. The geohelminths found were Ascaris lumbricoides (21.6%) and Trichuris trichiura (10.8%), with mean parasite densities of 243 (24; 3,552) and 36 (24; 96) eggs/gram of faeces, respectively. Co-infections of A. lumbricoides and P. falciparum were the most frequent and correlated positively. While no significant difference was observed on the prevalences of single and co-infections between the two localities, there was a significant difference in the density of A. lumbricoides infection between the two localities. The overall prevalence of anaemia was 42%, with individuals co-infected with T. trichiura and P. falciparum (60%) being the most at risk. While the prevalence of malaria and anaemia were inversely related to age, children aged 5–14 years were more susceptible to geohelminthiasis and their co-infections with malaria.

Conclusion/Significance

Co-existence of geohelminths and malaria parasites in Nkassomo and Vian enhances the occurrence of co-infections, and consequently, increases the risk for anaemia.  相似文献   

17.

Background

Schistosoma haematobium and Schistosoma mansoni are blood flukes that cause urogenital and intestinal schistosomiasis, respectively. In Côte d′Ivoire, both species are endemic and control efforts are being scaled up. Accurate knowledge of the geographical distribution, including delineation of high-risk areas, is a central feature for spatial targeting of interventions. Thus far, model-based predictive risk mapping of schistosomiasis has relied on historical data of separate parasite species.

Methodology

We analyzed data pertaining to Schistosoma infection among school-aged children obtained from a national, cross-sectional survey conducted between November 2011 and February 2012. More than 5,000 children in 92 schools across Côte d′Ivoire participated. Bayesian geostatistical multinomial models were developed to assess infection risk, including S. haematobiumS. mansoni co-infection. The predicted risk of schistosomiasis was utilized to estimate the number of children that need preventive chemotherapy with praziquantel according to World Health Organization guidelines.

Principal Findings

We estimated that 8.9% of school-aged children in Côte d′Ivoire are affected by schistosomiasis; 5.3% with S. haematobium and 3.8% with S. mansoni. Approximately 2 million annualized praziquantel treatments would be required for preventive chemotherapy at health districts level. The distinct spatial patterns of S. haematobium and S. mansoni imply that co-infection is of little importance across the country.

Conclusions/Significance

We provide a comprehensive analysis of the spatial distribution of schistosomiasis risk among school-aged children in Côte d′Ivoire and a strong empirical basis for a rational targeting of control interventions.  相似文献   

18.

Background

Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4–8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.

Methods and Findings

To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.

Conclusions

These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria.  相似文献   

19.

Background

Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention.

Methods and Findings

Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9).

Conclusions

We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual''s capacity to mount an effective immune response to P. falciparum infection.  相似文献   

20.

Background

Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria.

Material and Methods

The study included 2227 Ghanaian children (3–59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up.

Results

Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment.

Conclusion

Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号