共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane electrical properties were measured in sheep cardiac Purkinje fibers, having diameters ranging from 50 to 300 mum. Both membrane capacitance and conductance per unit area of apparent fiber surface varied fourfold over this range. Membrane time constant, and capacitance per unit apparent surface area calculated from the foot of the action potential were independent of fiber diameter, having average values of 18.8 +/- 0.7 ms, and 3.4 +/- 0.25 muF/cm2, respectively (mean +/- SEM). The conduction velocity and time constant of the foot of the action potential also appeared independent of diameter, having values of 3.0 +/- 0.1 m/s and 0.10 +/- 0.007 ms. These findings are consistent with earlier suggestions that in addition to membrane on the surface of the fiber, there exists a large fraction of membrane in continuity with the extracellular space but not directly on the surface of the fiber. Combining the electrical and morphological information, it was possible to predict a passive length constant for the internal membranes of about 100 mum and a time constant for chaning these membranes in a passive 100-mum fiber of 1.7 ms. 相似文献
2.
Thin canine cardiac Purkinje fibers in a fast flow chamber were exposed to K-free fluid for 15 s to 6 min to initiate "sodium loading," then returned to K-containing fluid to stimulate the sodium pump. The electrophysiological effects of enhanced pump activity may result from extracellular K depletion caused by enhanced cellular uptake of K or from an increase in the current generated as a result of unequal pumped movements of Na and K, or from both. The effects of pump stimulation were therefore studied under three conditions in which lowering the external K concentration ([K]0) causes changes opposite to those expected from an increase in pump current. First, the resting potential of Purkinje fibers may have either a "high" value of a "low" (less negative) value: at the low level of potential, experimental reduction of [K]0 causes depolarization, whereas an increase in pump current should cause hyperpolarization. Second, in regularly stimulated Purkinje fibers, lowering [K]0 prolongs the action potential, whereas an increase in outward pump current should shorten it. Finally, lowering [K]0 enhances spontaneous "pacemaker" activity in Purkinje fibers, whereas an increase in outward pump current should reduce or abolish spontaneous activity. Under all three conditions, we find that the effects of temporary stimulation of the sodium pump are those expected from a transient increase in outward pump current, not those expected from K depletion. 相似文献
3.
4.
Calcium- and voltage-activated plateau currents of cardiac Purkinje fibers 总被引:1,自引:3,他引:1
下载免费PDF全文

We have used the two-microelectrode voltage-clamp technique to investigate the components of membrane current that contribute to the formation of the early part of the plateau phase of the action potential of calf cardiac Purkinje fibers. 3,4-Diaminopyridine (50 microM) reduced the net transient outward current elicited by depolarizations to potentials positive to -30 mV but had no consistent effect on contraction. We attribute this effect to the blockade of a voltage-activated transient potassium current component. Ryanodine (1 microM), an inhibitor of sarcoplasmic reticulum calcium release and intracellular calcium oscillations in Purkinje fibers (Sutko, J.L., and J.L. Kenyon. 1983. Journal of General Physiology. 82:385-404), had complex effects on membrane currents as it abolished phasic contractions. At early times during a depolarization (5-30 ms), ryanodine reduced the net outward current. We attribute this effect to the loss of a component of calcium-activated potassium current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. At later times during a depolarization (50-200 ms), ryanodine increased the net outward current. This effect was not seen in low-sodium solutions and we could not observe a reversal potential over a voltage range of -100 to +75 mV. These data suggest that the effect of ryanodine on the late membrane current is attributable to the loss of sodium-calcium exchange current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. Neither effect of ryanodine was dependent on chloride ions, which suggests that chloride ions do not carry the ryanodine-sensitive current components. Strontium (2.7 mM replacing calcium) and caffeine (10 mM), two other treatments that interfere with sarcoplasmic reticulum function, had effects in common with ryanodine. This supports the hypothesis that the effects of ryanodine may be attributed to the inhibition of sarcoplasmic reticulum calcium release. 相似文献
5.
《The Journal of general physiology》1975,65(3):367-384
A "slow" inward current (Is) has been identified in ventricular muscle and Purkinje fibers of several mammalian species. The two- microelectrode voltage clamp technique is used to examine some of the relationships between Is and contraction of the sheep cardiac Purkinje fiber. "Tails" of inward current occurring on repolarization and extrapolation of Is recovery each show that the Is system may not inactivate completely during prolonged depolarization. The rate of recovery of Is after a depolarization is slow, and when a train of 300- ms clamps (frequency 1 s-1) is begun after a rest, Is is larger for the first clamp than it is for succeedings clamps. For the first clamp after a rest, the thresholds for Is and tension are the same and there is a direct correlation between peak tension and peak Is for clamp voltages between threshold and minus 40 mV. After a clamp, however, the ability to contract recovers much more slowly than does Is. Therefore, since Is may occur under certain conditions without tension, the realtionship between Is and tension must be indirect. Calcium entering the cell via this current may replenish or augment an intracellular calcium pool. 相似文献
6.
7.
8.
E. Canale G. R. Campbell Y. Uehara T. Fujiwara J. J. Smolich 《Cell and tissue research》1983,232(1):97-110
Previous attempts to study the cytoarchitecture of cardiac Purkinje fibers with the scanning electron microscope (SEM) have been limited by the surrounding dense connective tissue. In this study the connective tissue was removed by treatment with 8N HCl, after adult sheep hearts were fixed in diastole or systole and tissue taken for SEM and transmission electron microscopy (TEM). In SEM, Purkinje fibers freely anastomosed in false tendons and formed a subendocardial plexus. In systole, medium and small-sized Purkinje fibers formed deep clefts not observed in diastole. The clefts are thought to be due to sarcolemmal folding and fiber buckling and may therefore affect conduction. The myofibrils beneath the laterally apposed sarcolemmas of adjacent Purkinje cells when fixed in systole were often observed as tightly curved arches in series. Similar configurations with expanded arches were observed in diastole. The formation of arches by myofibrils is unique to Purkinje fibers and is interpreted as the mechanism responsible for their compliance to stretch. The significance of contraction in producing the observed geometric changes in Purkinje fibers and the implications of their cytoarchitecture with respect to conduction are discussed. 相似文献
9.
Relationships between voltage and tension in sheep cardiac Purkinje fibers 总被引:1,自引:5,他引:1
下载免费PDF全文

《The Journal of general physiology》1975,65(3):345-365
The two-microelectrode technique of voltage clamping sheep cardiac Purkinje fibers was used to examine the changes in contraction which occur during trains of voltage clamps. (A "train" is defined as a series of voltage clamps delivered at a particular rate, beginning after a rest long enough that the effects of previous stimulation have died away.) Contractions showed striking staircases, or progressive changes in peak isometric tension, during trains. Short clamps, clamps to voltages more negative than --20 or --30 mV, or holding potentials less negative than the resting potential favored negative staircases, while long clamps, clamps to positive voltages, and holding potentials near the resting potential each favored positive staircases. The staircase behavior appeared to be due to changes in the initial rate of recovery of the ability to contract. The changes in staircase behavior as a function of clamp voltage suggested that the relationship between peak tension and clamp voltage should depend on the experimental design. When the steady-state contraction was plotted as a function of clamp voltage, voltage-tension relations like those recently reported for working ventricle were obtained, with a threshold between --30 and - -40 mV and a steep relation between tension and voltage. When the first contraction after a rest was plotted, the threshold voltage was more negative, the curve was flatter, and the peak tensions at inside positive voltages were reduced. 相似文献
10.
Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores. 相似文献
11.
12.
13.
14.
15.
Recent experiments in canine Pukinje fibers (Gadsby and Cranefield, 1979) have shown that following a period of sodium loading in K+-free solution a slowly decaying outward current is observed. This current has been attributed to the activity of the electrogenic Na+-K+ exchange pump. In the present paper we show that similar slowly decaying outward currents are observed following prolonged periods of overdrive with action potentials or with brief depolarizing voltage clamp pulses. The dependent of the prolonged outward current on the duration and frequency of the preceding period of overdrive and on the potential following overdrive is reported. We also present results which indicate that a large portion of this current can be induced by phasic Na+ loading through the fast-inward channel. 相似文献
16.
Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers 总被引:1,自引:1,他引:1
下载免费PDF全文

Intracellular pH (pHi) was measured with a pH-sensitive microelectrode in voltage-clamped sheep cardiac Purkinje fibers while tension was simultaneously measured. All solutions were nominally CO2/HCO3 free and were buffered with Tris. The addition of NH4Cl (5-20 mM) produced an initial intracellular alkalosis that was associated with an increase of twitch tension. At the same time, a component of voltage-dependent tonic tension developed. Prolonged exposure (greater than 5 min) to NH4Cl resulted in a slow recovery of pHi accompanied by a decrease of tension. Removal of NH4Cl produced a transient acidosis that was accompanied by a fall of force. In some experiments, there was then a transient recovery of force. If extracellular pH (pHo) was decreased, then pHi decreased slowly. Tension also fell slowly. An increase of pHo produced a corresponding increase of both force and pHi. The application of strophanthidin (10 microM) increased force and produced an intracellular acidosis. The addition of NH4Cl, to remove this acidosis partially, produced a significant increase of force. The above results show that contraction is sensitive to changes of intracellular but not extracellular pH. This pH dependence will therefore modify the contractile response to inotropic maneuvers that also affect pHi. 相似文献
17.
Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. 总被引:5,自引:0,他引:5
下载免费PDF全文

Intracellular Na ion activity (aiNa) and twitch tension (T) of constantly driven (1 Hz) canine cardiac Purkinje fibers were measured simultaneously and continuously with neutral carrier Na+-selective microelectrodes and a force transducer. The aiNa of 8.9 +/- 1.4 mM (mean +/- SD, n = 52) was obtained in the driven fibers perfused with normal Tyrode solution. Temporary interruption of stimulation showed that aiNa of the driven fibers was approximately 1.5 mM greater than that of quiescent fibers. The constantly driven fibers were exposed to strophanthidin of 10(-8), 5 X 10(-8), 10(-7), 5 X 10(-7), and 10(-6) M for 5 min. No detectable changes in aiNa and T were observed in the fibers exposed to 10(-8) M strophanthidin, and the threshold concentration of the strophanthidin effect appeared to be approximately 5 X 10(-8) M. With concentrations greater than 5 X 10(-8) M, strophanthidin produced dose-dependent increases in aiNa and T. An increase in aiNa always accompanied an increase in T and after strophanthidin exposure both aiNa and T recovered completely. During onset and recovery periods of the strophanthidin effect the time course of change in aiNa was similar to that of change in T. A plot of T vs. aiNa during the onset and recovery periods showed a linear relationship between T and aiNa. These results indicate strongly that the positive inotropic effect of strophanthidin is closely associated with the increase in aiNa. Raising [K+]0 from 5.4 to 10.8 mM produced decreases in aiNa and T, and restoration of [K+]0 resulted in recoveries of aiNa and T. During the changes of [K+]0 the time course of change in aiNa was similar to that of the change in T. A steady-state sarcoplasmic Ca ion activity (aiCa) of 112 +/- 31 nM (mean +/- SD, n = 17) was obtained in the driven fibers with the use of neutral carrier Ca2+-selective microelectrodes. Temporary interruption produced 10-30% decreases in aiCa. No detectable changes in aiCa were observed in the fibers exposed to strophanthidin of 10(-7) M or less; 5 X 10(-7) and 10(-6) M strophanthidin produced 1.3-1.6 and 2-3-fold increases in aiCa, respectively. This result is consistent with the hypothesis that an increase in aiNa produces an increase in aiCa, which enhances Ca accumulation in the intracellular stores. 相似文献
18.
4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers 总被引:10,自引:0,他引:10
下载免费PDF全文

We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current. 相似文献
19.
The events by which [Ca]O modifies diastolic depolarization (DD) were analyzed in sheep cardiac Purkinje fibers perfused in vitro. Cs (2 mM) reduced diastolic depolarization (DD) at different [Ca]O and in 10.8 mM [Ca]O revealed an oscillatory potential (VOS) and the decay of a prolonged depolarization (Vex). In the presence of Cs, procedures that reduce Cai (a slower driving rate, lower [Ca]O or tetrodotoxin) abolished VOS and Vex and partially restored DD. In 10.8 mM [Ca]O and at all driving rates, Cs reduced DD slope, DD amplitude and VOS amplitude but had little effect on the VOS time to peak. In 10.8 mM [Ca]O, decreasing calcium overload by different means (2.6 microM TTX, 0.2 mM Cd) abolished VOS and decreased DD slope and amplitude. Substituting Na with Li induced marked aftercontractions but small VOS. In 10.8 mM [Ca]O, Li increased the amplitude of the aftercontractions and decreased that of VOS. Li also depolarized slightly the resting membrane and abolished the voltage undershoot (Emax) at the end of the action potential. In low [K]O, Li repolarized the resting membrane but the repolarization was maintained only in the presence of Ca. It is concluded that Ca overload causes both VOS and Vex which can either be masked by or can mask DD depending on the magnitude of DD and of Ca overload. VOS is apparently caused by an electrogenic Na-Ca exchange since Li-induced Ca overload increases the aftercontraction but decreases VOS. 相似文献
20.
Purkinje fiber action potentials and concomitant intercellular cleft [K] variations were reconstructed by using modified McAllister, Noble & Tsien (1975) equations including the pump current, ip, and the pacemaker current, if. Three different mean cleft widths were chosen: 40, 200 and 1000 nm. Assuming a cylindrical arrangement of the cells in the bundle, the cleft [K] gradient across the bundle was calculated by using the radial cylindrical diffusion equation. The effects of varying several parameters (cleft width, tortuosity, ip and if) were studied in conditions corresponding to two different values of [K] in the bulk solution, namely 2.7 and 5.4 mM. The shortening influence on the action potential of the systolic increase in cleft [K] was detectable only in the case of the smallest cleft width. Reduction in electrogenic pump activity led to alterations of the electrical activity which depended on the cleft width. The evolution of the intercellular [K] during each action potential and the following diastolic period was normally biphasic; a small reaccumulation during the late part of the diastole was induced by the K component of the if current. Experimentally determined intercellular [K] variations described in the literature exhibit a monophasic evolution. Such a monophasic evolution could be reproduced after reduction of both if and the transient outward K current and suppression of the negative slope of the ik1-Em relationship. In this case the amplitude of the cyclic change in intercellular [K] was approximately equal to 0.2 mM (for a 200 nm cleft width), a value much lower than that experimentally recorded. Possible reasons for this discrepancy are discussed. A simplified three compartment model for K diffusion was also used. Results obtained with the two models demonstrated that the simplified model can be used as a reasonable approximation of the more complex radial diffusion model, with a reduction in computation time reaching 80% or more. 相似文献