首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson’s disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.  相似文献   

2.
The exact origin of tremor in Parkinson's disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson's disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop.  相似文献   

3.
Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic Parkinson’s disease (IPD) can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs). An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i) a subcortical motor network; (ii) each of its component regions and (iii) the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.  相似文献   

4.
In Parkinson’s disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe). Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson’s disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.  相似文献   

5.
In this paper, we present a neural network model of the interactions between cortex and the basal ganglia during prehensile movements. Computational neuroscience methods are used to explore the hypothesis that the altered kinematic patterns observed in Parkinson’s disease patients performing prehensile movements is mainly due to an altered neuronal activity located in the networks of cholinergic (ACh) interneurons of the striatum. These striatal cells, under a strong influence of the dopaminergic system, significantly contribute to the neural processing within the striatum and in the cortico-basal ganglia loops. In order to test this hypothesis, a large-scale model of neural interactions in the basal ganglia has been integrated with previous models accounting for the cortical organization of goal directed reaching and grasping movements in normal and perturbed conditions. We carry out a discussion of the model hypothesis validation by providing a control engineering analysis and by comparing results of real experiments with our simulation results in conditions resembling these original experiments.  相似文献   

6.
 Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia–thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson’s disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model’s globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes. Received: 1 September 1994/Accepted in revised form: 16 May 1995  相似文献   

7.
8.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

9.
Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.  相似文献   

10.
A concept in Parkinson's disease postulates that motor cortex may pattern abnormal rhythmic activities in the basal ganglia, underlying the genesis of observed motor symptoms. We conducted a preclinical study of electrical interference in the primary motor cortex using a chronic MPTP primate model in which dopamine depletion was progressive and regularly documented using 18F-DOPA positron tomography. High-frequency motor cortex stimulation significantly reduced akinesia and bradykinesia. This behavioral benefit was associated with an increased metabolic activity in the supplementary motor area as assessed with 18-F-deoxyglucose PET, a normalization of mean firing rate in the internal globus pallidus (GPi) and the subthalamic nucleus (STN), and a reduction of synchronized oscillatory neuronal activities in these two structures. Motor cortex stimulation is a simple and safe procedure to modulate subthalamo-pallido-cortical loop and alleviate parkinsonian symptoms without requiring deep brain stereotactic surgery.  相似文献   

11.
Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson’s disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI). The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.  相似文献   

12.
Parkinsonian tremor is most likely due to oscillatory neuronal activities of central oscillators such as the subthalamic nucleus (STN)-external segment of the globus pallidus (GPe) pacemaker within the basal ganglia (BG). Activity from the central oscillator is proposed to be transmitted via transcortical pathways to the periphery. A computational model of the BG is proposed for simulating the transmission of the STN oscillatory activity to the cortex, based closely on known anatomy and physiology of the BG. According to the results of the simulation, for transmission of the STN oscillatory activity to the cortex, the STN oscillatory activity has to be transmitted simultaneously to the thalamus via STN-internal segment of the globus pallidus (GPi)-thalamus and STN-GPe-GPi-thalamus pathways. This transmission is controlled by the various factors such as the phase between the STN and GPe oscillatory activities, the STN oscillatory activity frequency, the low-threshold calcium spike bursts of the thalamus and the GPi spontaneous activity.  相似文献   

13.
Low frequency rest tremor is one of the cardinal signs of Parkinson's disease and some of its animal models. Current physiological studies and models of the basal ganglia differ as to which aspects of neuronal activity are crucial to the pathophysiology of Parkinson's disease. There is evidence that neural oscillations and synchronization play a central role in the generation of the disease. However, parkinsonian tremor is not strictly correlated with the synchronous oscillations in the basal ganglia networks. Rather, abnormal basal ganglia output enforces abnormal thalamo-cortical processing leading to akinesia, the main negative symptom of Parkinson's disease. Parkinsonian tremor has probably evolved as a downstream compensatory mechanism.  相似文献   

14.
 Fast aiming movements were measured in a choice reaction paradigm in a healthy control group and in Parkinsonian patients. The patients were tested without (‘off ’) and with 3,4-dihydroxyphenylalanine (‘on’) (L-dopa) medication. The movement trajectories were used to estimate the parameters of a dynamic linear model. The model is based on the functional structure of the basal ganglia-thalamocortical circuit with direct and indirect pathways linking the putamen to the basal ganglia output nuclei (Albin et al. 1989). The output of the circuit is connected to a model for the motor neuron-musculo-skeletal system. The gain k d for the direct pathway and the gain k i for the indirect pathway were estimated. They were found to be significantly decreased for Parkinsonian patients in ‘off ’ compared with the control group. L-dopa therapy in Parkinsonian patients increased the gains of the direct and the indirect pathway almost to normal values which implies that the long-term dopamine level in the striatum was excitatory for the direct and for the indirect pathway. This result is restricted to movements of correct size. For movements of diminished size, which are typical for Parkinsonian patients, the model predicts that the dopamine level in the striatum is excitatory for the direct pathway but inhibitory for the indirect pathway. The simulated values for neuronal activities are in agreement with expected values according to the experimental data. The proposed model of the ‘motor’ basal ganglia thalamocortical circuit implies that information about biomechanical properties of the musculo-skeletal system is stored in the ‘motor’ basal ganglia-thalamocortical circuit, and that the basal ganglia are involved in computation of the desired movement amplitude. Received: 24 April 1996/Accepted in revised form: 25 February 1997  相似文献   

15.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

16.
Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo.  相似文献   

17.
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.  相似文献   

18.
Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington''s disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson''s disease.  相似文献   

19.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

20.

Background

Genome-wide association studies have been successful in identifying common genetic variants for human diseases. However, much of the heritable variation associated with diseases such as Parkinson’s disease remains unknown suggesting that many more risk loci are yet to be identified. Rare variants have become important in disease association studies for explaining missing heritability. Methods for detecting this type of association require prior knowledge on candidate genes and combining variants within the region. These methods may suffer from power loss in situations with many neutral variants or causal variants with opposite effects.

Results

We propose a method capable of scanning genetic variants to identify the region most likely harbouring disease gene with rare and/or common causal variants. Our method assigns a score at each individual variant based on our scoring system. It uses aggregate scores to identify the region with disease association. We evaluate performance by simulation based on 1000 Genomes sequencing data and compare with three commonly used methods. We use a Parkinson’s disease case–control dataset as a model to demonstrate the application of our method.Our method has better power than CMC and WSS and similar power to SKAT-O with well-controlled type I error under simulation based on 1000 Genomes sequencing data. In real data analysis, we confirm the association of α-synuclein gene (SNCA) with Parkinson’s disease (p = 0.005). We further identify association with hyaluronan synthase 2 (HAS2, p = 0.028) and kringle containing transmembrane protein 1 (KREMEN1, p = 0.006). KREMEN1 is associated with Wnt signalling pathway which has been shown to play an important role for neurodegeneration in Parkinson’s disease.

Conclusions

Our method is time efficient and less sensitive to inclusion of neutral variants and direction effect of causal variants. It can narrow down a genomic region or a chromosome to a disease associated region. Using Parkinson’s disease as a model, our method not only confirms association for a known gene but also identifies two genes previously found by other studies. In spite of many existing methods, we conclude that our method serves as an efficient alternative for exploring genomic data containing both rare and common variants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0088-9) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号