首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
K G Olson  S P Welch 《Life sciences》1991,48(6):575-581
The effects of the kappa-selective ligands dynorphin A (1-13) (DYN) and U50, 488H (U50) on free intracellular calcium were evaluated using synaptosomes prepared from the cerebellum of the guinea pig, an area with a high density of kappa receptors. DYN (10 microM) produced small nonsignificant decreases in basal free intracellular calcium (5-7%). U50 (10 microM) produced significant 15-20% decreases in basal free intracellular calcium which were reversed by nor-BNI (1 microM). When intracellular calcium levels were increased 8-10% by the administration of c-AMP or forskolin, DYN (10 microM) produced significant decreases in intracellular calcium of 10%. The effects of U50, 488H were not enhanced by increasing the synaptosomal levels of c-AMP. Neither DYN nor U50 (1 microM) significantly blocked the rise in free intracellular calcium induced by 50 mM KCI. When intracellular calcium concentrations were increased by the administration of 50 mM KCI prior to the administration of DYN or U50 (10 microM), the kappa ligands decreased intracellular calcium concentrations. These data indicate that DYN and U50 interact with kappa receptors resulting in a decrease in free intracellular calcium possibly via an enhancement of the efflux of calcium. The modulation of intracellular free calcium by the kappa opioids may be a mechanism by which these opioids produce their biological effects.  相似文献   

2.
H L Wen  Z D Mehal  B H Ong  W K Ho 《Peptides》1987,8(1):191-193
Dynorphin-(1-13) and -(1-10) were administered by intrathecal injection into six terminal cancer patients at doses of 7.5, 15, 30 and 60 micrograms. Compared with saline, both analogues of dynorphin were effective in suppressing pain. The duration of relief at doses of 15 micrograms and above was more than 4 hours on the average for both peptides. However, no proportional increase in response was observed when the dose applied was doubled. This lack of response might have been due to the development of tolerance.  相似文献   

3.
S J Henriksen  G Chouvet  F E Bloom 《Life sciences》1982,31(16-17):1785-1788
Recent immunohistochemical and radioimmunochemical observations have demonstrated a differential distribution of immunoreactive dynorphin (DYN) in rat brain. The presence of DYN immunoreactivity in a major intrinsic fiber pathway within the rat hippocampus (the mossy fiber system) has led us to evaluate the possible role of DYN and other closely related peptides in this structure. Single cell activity and hippocampal field potentials have been recorded from the CA1-CA3 cellular fields in halothane or urethane anesthetized rats. DYN, DYN1-13, DYN1-8, and alpha-neo-endorphin had an excitatory effect on most CA1-CA3 neurons encountered as has been previously observed for opiates and other opioid peptides. This response could be blocked by naloxone or by co-administration of Mg++ ion suggesting an indirect (synaptic) mechanism of excitation similar to that hypothetized for enkephalin. A significant number of CA3 neurons, however, exhibited a non-naloxone sensitive inhibitory response to DYN, related opioid peptides, and the kappa agonist WIN 35-197 (ethylketocyclazocine). Field potential analysis of CA1-CA3 neuronal responses to mossy fiber activation also indicated an excitatory, Mg++ reversible, action of iontophoretically applied DYN. These observations support our cytochemical and assay studies indicating diverse opioid systems within the rat hippocampus. In addition, these functional studies are congruent with other evidence suggesting multiple opioid mechanisms in this structure.  相似文献   

4.
L F Tseng 《Life sciences》1988,42(13):1287-1293
Intraventricular injection of morphine sulfate, 40 micrograms, released an enzyme from the spinal cord into the perfusate which degraded dynorphin A (1-8) and, to a lesser extent, dynorphin A (1-13) in urethane anesthetized rats. The enzyme did not degrade dynorphin A (1-17), Met-enkephalin, Leu-enkephalin, substance P and neurotensin. This dynorphin A (1-8) degrading enzyme was inhibited by aprotinin, thiorphan, and, to a lesser extent, by bacitracin but was not inhibited by bestatin. A kinetic study of the interaction between dynorphin A (1-8) and aprotinin with the enzyme indicated that it is competitive in nature. The pharmacological significance of the findings is still unknown.  相似文献   

5.
Conscious, unrestrained rats were used to determine the hemodynamic (blood pressure and heart rate) responses following intravenous (IV) injection of dynorphin A(1-13) and the possible receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 g) were given IV bolus injections (via femoral venous catheter) of 6.0 to 600 nmoles/kg of dynorphin A(1-13), 8.0 nmoles/kg of norepinephrine HCl (NE), 14.3 pmoles/kg of angiotensin II or a vehicle control solution. Blood pressure (BP) and heart rate (HR) were monitored via femoral arterial catheter (into abdominal aorta) over 90 sec postpeptide or -amine administration before and 10 min after IV injection of 4.2 mumoles/kg of naloxone HCl (opiate antagonist), yohimbine HCl (alpha 2 receptor antagonist) or prazosin HCl (alpha 1 receptor antagonist). Dynorphin A(1-13) caused a transient but dose-related rise in mean arterial pressure (MAP) whereas mean pulse pressures (MPP) and mean heart rates (MHR) concomitantly fell, from preinjection control values in a dose-dependent fashion. Pretreatment with naloxone blocked the pressor response of only a subsequent injection with 20 nmoles/kg but not 60 nmoles/kg of dynorphin A or NE (8.0 nmoles/kg). Pretreatment with yohimbine suppressed the marked pressor responses of subsequent NE or Dyn A (60 nmoles/kg) administration whereas prazosin antagonized the rise in MAP of only the lower doses of dynorphin as well as NE. The suppression of the pressor responses of dynorphin by opiate or alpha receptor antagonists were not caused by tachyphylaxis for repeated injections of 6.0 or 60 nmoles/kg of dynorphin caused the same rise in MAP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Both the endogenous opioid peptide, dynorphin (1-13) (DYN), and morphine elicited dose-dependent feeding when microinjected into the ventral tegmental area of food-satiated rats. DYN was 50,000 times more potent than morphine in producing feeding. Whereas the ED50 for morphine was in the nanomole range, the ED50 for DYN was in the femtomole range. Administration of a narcotic antagonist attenuated DYN-elicited feeding. These data suggest a possible role for DYN in the VTA in opioid modulation of feeding behavior.  相似文献   

7.
Cell bodies in the head of the caudate nucleus that synthesize prodynorphin peptides form a substantial projection to the substantia nigra pars reticulata (SNR). The discovery of this pathway suggested an involvement of prodynorphin products in motor control. The effects of unilateral nigral microinjections of prodynorphin products were tested in an in vivo circling model. Dynorphin (1-8), dynorphin (1-7), dynorphin (1-6), dynorphin (2-17) (des-Tyr-dynorphin), and Leu-enkephalin induced spontaneous contralateral circling at 20 nmol doses. The effect of dynorphin (1-8) was dose dependent and was not blocked by pretreatment with naloxone or WIN 44,441-3. These findings clearly demonstrate the dynorphinergic involvement in nigral motor control which may consist of an opioid and a non-opioid component.  相似文献   

8.
Intracerebroventricular administration of the dynorphin analog, [D-Ala2,(F5)Phe4]-dynorphin 1-13-NH2 (DAFPHEDYN) in rats produced diuresis and profound analgesia. Both effects were antagonized by central administration of naltrexone or naloxone. Intravenous administration of 10, 25, and 50 mg/kg of DAFPHEDYN failed to induce diuresis. The increased potency of DAFPHEDYN was apparent from the failure of an equal dose of the parent compound (dynorphin 1-13) to produce diuresis and the failure of [D-Ala2]-dynorphin 1-13-NH2 to produce analgesia. Radioligand binding studies indicated the DAFPHEDYN retains the same degree of kappa selectivity as the parent compound (dynorphin 1-13) though a drop in affinity occurred. DAFPHEDYN may be of significant interest because it retains the essential pharmacology of the parent compound and exhibits marked in vivo potency.  相似文献   

9.
The effect on blood pressure and heart rate of central administration of dynorphin A(1-13) and of beta-, gamma-, and alpha-endorphin related peptides was studied in urethane-anesthetized rats. Intracerebroventricular (i.c.v., 0.1-10 micrograms) administration of beta-endorphin resulted in a dose-dependent, naltrexone-reversible hypotension and bradycardia. N-terminally modified fragments of beta-endorphin did not reduce blood pressure and heart rate. On the other hand, a dose of 10 micrograms of beta-endorphin(1-27), which lacks the four C-terminal amino acid residues of beta-endorphin, induced a fall in blood pressure and had a biphasic effect on heart rate. These responses, however, were resistant to pretreatment with naltrexone. None of the fragments of beta-endorphin smaller than beta-endorphin(1-27) affected blood pressure when administered i.c.v. in a dose of 10 micrograms. A small transient bradycardia was observed after i.c.v. administration of 10 micrograms of beta-endorphin(1-26), alpha, and gamma-endorphin. The naltrexone-reversible bradycardic response of alpha- and gamma-endorphin was not present in des-tyrosine- and des-enkephalin-alpha- and gamma-endorphin and also not in alpha-endorphin(10-16) and gamma-endorphin(10-17). Upon i.c.v. administration (0.1-50 micrograms) a dose-dependent, naltrexone-reversible decrease in blood pressure and heart rate was induced by dynorphin A(1-13). The present data indicate a hypotensive influence of beta-endorphin, beta-endorphin(1-27), and dynorphin A(1-13), whereas other fragments of beta-endorphin had little or no effect on the cardiovascular parameters investigated.  相似文献   

10.
The effects of dynorphin A (1-13) (DYN), injected into the preoptic area, was investigated on water intake in rats. DYN at both doses of 2 and 10 nmoles significantly increased water intake for two and four hours after the injection in a dose related fashion. However, no significant change was observed in food intake. Naloxone pretreatment (0.3 mg/kg, s.c.) completely attenuated the DYN-induced stimulation of water intake. The present studies suggest that DYN in the preoptic area may play an important role in the regulation of drinking behavior, but have no effect on food intake.  相似文献   

11.
Changes in functional responsiveness of spinal opioid receptors in monoarthritic rats were investigated at the behavioral and the molecular level. After intrathecal administration of morphine, D-Ala2-D-Leu5-enkephalin (DADLE), D-Pen2-D-Pen5-enkephalin (DPDPE) and dynorphin monoarthritic rats showed an enhanced antinociceptive response as measured by a tail-flick latency. No such changes were observed following administration of the selective kappa agonists U50,488H and U69,593. The opioid mu and delta receptor agonists (0.1-1.0 microM) inhibited the basal, as well as the forskolin-stimulated cAMP formation in spinal cord slices obtained from monoarthritic rats, whereas no significant changes were found in control animals. Higher concentrations of the mu and delta opioid receptor agonists were required to attenuate the cAMP level in spinal cord of control animals. The selective kappa agonists U50,488H and U69,593 did not influence the cAMP formation in monoarthritic or control animals. Additionally, we found that the GppNHp-stimulated level of cAMP was higher in the spinal cord slices of monoarthritic rats, which points to an enhanced responsiveness of the adenylate cyclase effector system to the action of this GTP analog. Our data suggest that the enhanced antinociceptive response to intrathecally administered opioids in monoarthritic rats may be connected with the increased sensitivity of adenylate cyclase to the inhibitory effects of mu and delta agonists.  相似文献   

12.
Qi WX  Lu CR 《生理学报》2003,55(1):101-104
本实验用福尔马林试验在动物痛模型上观察了鞘内单纯注射生理盐水 (NS)、NMDA受体阻断剂MK 80 1、阿片受体阻断剂纳洛酮 (naloxone)、强啡肽A [DynA (1 17) ]以及先用MK 80 1或纳洛酮再注射DynA (1 17)对动物的行为痛反应的影响。大鼠后肢脚掌皮下注射福尔马林后出现的行为痛反应显示有 2个时相 ,即首先出现持续较短的第一时相和 3~ 6min后出现的持续较长的第二时相。实验结果显示 ,各组的第一时相无明显差异 ;而第二时相则有差异 :鞘内注射DynA (1 17)组第二时相痛反应持续时间 (489 5± 2 2 5s)明显较单纯鞘内注射NS组(3 44 7± 12 9s)、MK 80 1组 (3 3 1 4± 2 0 7s)和纳洛酮组 (3 5 2 5± 18 4s)长 (均为P <0 0 1) ;而先用NMDA受体阻断剂MK 80 1后再注射DynA (1 17) ,则第二时相行为痛反应的持续时间 (2 85 7± 19 4s)较单纯注射DynA (1 17)组明显缩短 (P <0 0 1) ,但与单纯鞘内注射MK 80 1组相比无明显差异 ;先用阿片受体阻断剂纳洛酮后再注射DynA (1 17) ,则动物的第二时相行为痛反应 (473 8± 17 8s)与单纯注射DynA (1 17)组相比无明显差异 ,而与单纯注射NS组或纳洛酮组相比则明显增强 (分别为P <0 0 1)。因此本实验结果提示 :(1)在脊髓水平的DynA(1 17)具有促进福尔马林所诱导的第二  相似文献   

13.
Experiments were designed to determine the hemodynamic responses of conscious, unrestrained rats given intracerebroventricular (i.c.v.) injections of dynorphin A-(1-13) and the possible central receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 gb. wt.) received i.c.v. injections (by gravity flow in a total volume of 3 or 5 microliter) of control solutions of sterile saline (SS) or dimethylsulfoxide (DMSO) or 1.5, 3.0 or 6.1 nmol of dynorphin A-(1-13). Blood pressure and heart rate changes were monitored over 2 h after administration; as well, feeding activity was visually assessed and scored over this period. Other groups of conscious rats were pretreated i.c.v. with equimolar doses (3.0-24.4 nmol) of specific receptor antagonists (naloxone HCl, phentolamine HCl, propranolol HCl, yohimbine HCl or prazosin HCl) 10 min before subsequent i.c.v. administration of SS or DMSO/SS or 6.1 nmol of dynorphin A-(1-13). I.c.v. injection of dynorphin A-(1-13) caused a dose-related pressor response, associated temporally with tachycardia. As well, dynorphin evoked feeding activity and some grooming, which occurred when the rats were hypertensive and tachycardic and decreased as heart rate and blood pressure returned to control levels. I.c.v. pretreatment studies indicated that naloxone HCl (12.2 nmol), phentolamine HCl (12.2 nmol) and prazosin HCl (6.1 nmol) blocked the pressor response, tachycardia as well as feeding activity of rats subsequently given dynorphin. The results suggest the pressor and tachycardic effects of conscious rats following i.c.v. dynorphin administration may, in part, be due to behavioral activation (feeding). As well, these data indicate that both opioid as well as alpha 1-adrenergic receptors within the CNS are involved in mediating the pressor, tachycardic and feeding responses of conscious rats given i.c.v. injections of dynorphin A.  相似文献   

14.
The objectives of this study were to test the hypothesis that dynorphin in the central nervous system modulates epinephrine-induced cardiac arrhythmias and that central cholinergic mechanisms are operative in this action of dynorphin. Cardiac arrhythmias were produced by continuous intravenous infusion of epinephrine, in Wistar rats, previously instrumented with catheters in the lateral cerebral ventricle, femoral vein and femoral artery. Epinephrine produced ventricular premature complexes and later the development of fatal ventricular fibrillation. Dynorphin A (1-13), 5 or 20 micrograms (3 or 12 nM) administered into the lateral cerebral ventricle (ICV), significantly (P less than 0.05) increased the threshold for development of cardiac arrhythmias. Dynorphin A (1-13), 20 micrograms, increased the epinephrine dose at the occurrence of ventricular premature beats to 171 +/- 8 (mean +/- 1 S.E.M.) compared to 120 +/- 5 micrograms epinephrine/kg in the control group and increased the dose at the onset of fatal arrhythmias to 186 +/- 8 compared to 141 +/- 10 micrograms epinephrine/kg in the control group. The action of dynorphin was significantly (P less than 0.05) antagonized by the kappa opioid antagonist MR2266. Atropine sulfate, administered ICV or intravenously, produced a dose dependent antagonism of this action of dynorphin A (1-13). This was not due to the peripheral effects of atropine, as atropine methylnitrate, which does not cross the blood brain barrier, did not oppose the effects of dynorphin A (1-13). These data indicate (i) dynorphin A (1-13) increases the threshold for or suppresses the manifestations of epinephrine-induced ventricular arrhythmias, (ii) dynorphin's action on cardiac arrhythmias is mediated through central cholinergic rather than peripheral parasympathetic mechanisms (iii) dynorphin may play a role as an endogenous opioid within the brain that modulates cardiac arrhythmias in circumstances of elevated circulating epinephrine concentration.  相似文献   

15.
Hemodynamic (blood pressure and heart rate) experiments were conducted in conscious and/or anesthetized male Sprague-Dawley (S.D.), heterozygous and homozygous Brattleboro rats given intravenous (iv) dynorphin A(1-13), arginine vasopressin (AVP), norepinephrine (HCl, (NE) or sterile saline before and 10 min after an iv bolus injection of a specific receptor antagonist. These receptor blockers (kappa receptor antagonist Mr2266, alpha adrenoceptor antagonist phentolamine HCl or the AVP-V1 receptor antagonist d(CH2)5Tyr-(Me)AVP were given in equimolar concentrations (15 nmol/kg iv). In all conscious S.D. groups, iv injection of AVP (60 pmol/kg), NE (12.5 nmol/kg) and dynorphin A(1-13) (60 nmol/kg) evoked significant increases in mean arterial pressure (MAP) associated with concomitant bradycardia. The hemodynamic responses to 'both' AVP and dynorphin A(1-13) were blocked if given subsequent to AVP-V1 administration but not following phentolamine or Mr2266 pretreatment. The pressor and bradycardic responses of conscious heterozygous and homozygous Brattleboro rats after iv AVP or dynorphin again were only blocked by the AVP-V1 receptor antagonist. Anesthetized heterozygous and homozygous Brattleboro rats again showed pressor responses following iv AVP, NE or dynorphin A(1-13) but with slight or no associated bradycardia. The rise in blood pressure with AVP 'and' dynorphin A(1-13) in these groups also was only blocked by the d(CH2)5Tyr(Me)AVP antagonist. The results indicate that the pressor responses of rats given intravenous dynorphin A(1-13) involve the interaction of AVP-V1 receptors and suggest a functional interaction of these two neuropeptides in the modulation of vascular tone.  相似文献   

16.
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10 nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10 μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.  相似文献   

17.
M D Aceto  E R Bowman 《Peptides》1992,13(4):847-849
Each of the dynorphin A(1-13) or dynorphin (dyn) treatment groups receiving naloxone showed a significant overall reduction of overt signs compared with the dyn controls. The data suggested that the overt psychomotor effects of dyn in the rhesus monkey were especially prone to blockade by naloxone, and probably involved opioid mechanisms.  相似文献   

18.
M Xu  V K Kontinen  P Panula  E Kalso 《Peptides》1999,20(9):1071-1077
The antinociceptive effects of intrathecal (IT) (1DMe)NPYF were studied in adult Sprague-Dawley rats. (1DMe)NPYF produced dose-dependent antinociception that was reduced by subcutaneous injection of naloxone. (1DMe)NPYF (0.5 nmol) also potentiated the antinociceptive effects of intrathecal morphine 7.8 nmol. This suggests that the antinociceptive effects of (1DMe)NPYF are partially mediated by opioid receptor activation. In carrageenan inflammation, 5-10 nmol of (1DMe)NPYF was effective against both thermal hyperalgesia and mechanical allodynia. In the neuropathic pain model, the lowest dose tested (0.5 nmol) showed antiallodynic effects against cold allodynia. The results suggest a potential role for (1DMe)NPYF in the treatment of pain including neuropathic pain.  相似文献   

19.
Activation of central muscarinic receptors results in an antinociceptive response in experimental animals. Employing intrathecal (i.t.) injection and radiant heat applied to a rat's tail as the experimental paradigm, a spinally-mediated antinociceptive response was obtained following injection of cholinergic agonists. Since "cholinergic' analgesia is mediated independently of the opiate system, the possibility was considered that this response was mediated through inhibition of the local release of substance P. Rats were prepared with indwelling i.t. catheters which terminated in the L2-L3 region of the spinal cord. I.t. injection of carbachol (0.05-5 micrograms) or neostigmine (1-10 micrograms), but not nicotine (0.5-10 micrograms) produced dose-related increases in tail flick latencies. Pretreatment with i.t. injection of atropine or hemicholinium-3 significantly inhibited the antinociceptive response to neostigmine. Spinal substance P levels were measured 30 min following 0.5 micrograms carbachol. Levels in the dorsal horn were reduced by 30% compared with saline controls. Levels in the ventral horn were unchanged by carbachol. These results support the role of endogenous spinal acetylcholine in pain modification and suggest an interaction with substance P neurons of the dorsal spinal cord.  相似文献   

20.
Intrathecal infusion of the neuropeptide FF analogue, [D-Tyr1, (NMe)Phe3]neuropeptide FF (1DMe; 0.1 microm-0.1 mm) in anaesthetized rats produced a concentration-dependent decrease in the spinal outflow of dynorphin A (1-8)-like material, which persisted for at least 90 min after treatment with 10 microm-0.1 mm of the compound. Co-administration of d-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; 1 microm) to block spinal micro-opioid receptors did not modify this effect, whereas naltrindole (10 microm) totally prevented it and nor-binaltorphimine (10 microm) reduced the post-effect. These data suggest that 1DMe triggers the release of endogenous opioids that stimulate mainly delta-opioid receptors, and secondarily kappa-opioid receptors, thereby exerting a negative influence on dynorphin A (1-8)-like material outflow. Because dynorphin has pronociceptive properties, such a decrease in spinal dynorphin A (1-8)-like material release might underlie the long-lasting antinociceptive effects of intrathecally administered neuropeptide FF and analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号