首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The possibility of selectively reducing the number of β-helical structures theoretically possible for a D ,L -alternating peptide by using a N-methyl group as conformational constraint is considered. Some 1H-nmr data regarding Boc(L -Nle-D -Nle)3-L -Nle-D -MeNle -L -Nle-D -Nle-L -Nle-OMe (I), its formyl analogue (II), and the pentadecapeptide Boc(D -Leu-L -Leu)5-D -MeLeu -(L -Leu-D -Leu)2-OMe (III) are presented. It is shown that these alternating stereocooligopeptides with a N-methyl group in the (n ? 3) (I and II) or (n ? 4) position (III) differ drastically in their behavior from the corresponding nonmethylated compounds. In chloroform, I and II form predominantly ↑↓ β7.2-helices and III forms almost exclusively ↑↓ β5.6 or ↑↓ β7.2-helices. The helices are in every case those having the maximum possible number of interchain H bonds.  相似文献   

2.
The structure of Boc-(L-Val-D-Val)4-OMe has been determined by x-ray single-crystal diffraction analysis. The octapeptide crystallizes in the trigonal system, space group P3(2)21 with a = b = 12.760 A, c = 63.190 A and Z = 6. The independent unit is represented by one octapeptide chain. The structure has been solved by direct methods and it was anisotropically refined by least-squares procedures to a final R value of 0.08 for the 3018 "observed" reflections. One molecule of water was also located in the unit cell. Two octapeptide chains, related by a crystallographic binary axis, wind up around each other giving rise to a double-stranded left-handed antiparallel increases decreases beta 5.6-helix. The dimer, stabilized by 14 interstrand N--H....O = C hydrogen bonds, can be regarded as a cylinder with an hydrophilic inner core represented by the peptide units and an hydrophobic exterior of isopropyl groups. The inner diameter of the cylinder is 5.1 A.  相似文献   

3.
The crystal structure of Boc-(L-Phe-D-Phe)4-OMe has been determined by x-ray diffraction analysis. The peptide crystallizes in the triclinic system, space group P1 with a = 15.290 A, b = 15.163 A, c = 19.789 A, alpha = 102.49 degrees, beta = 96.59 degrees, gamma = 74.22 degrees, and Z = 2. The structure has been solved by coupling of the molecular replacement technique and expansion by tangent formula refinement of the set of known phases. Several cycles of Fourier calculations and least-squares refinement led to the location of 194 atoms of the two independent octapeptide chains and few molecules of cocrystallized solvent (chloroform, water, and methanol). The isotropic refinement converged to R = 0.13 for the 3077 "observed" reflections. The two independent octapeptide molecule form a dimer in the solid state: the two chains are associated by interstrand hydrogen bonds (12 of the type N-H ... O = C) with the formation of a double-stranded antiparallel right-handed -- beta 5.6-helix. These double helices can be represented as a cylinder with a hydrophilic inner core represented by the peptide units and an hydrophobic exterior constituted by the aromatic moieties. The dimensions of the cylinder are equal to those observed for Boc-(L-Val-D-Val)4-OMe. In the solid state the dimers pack with each other in an hexagonal fashion with the formation of layers; between the layers, solvent molecules fill empty spaces.  相似文献   

4.
The conventionally protected oligopeptides of the two homologous series Boc-(L -Ile)n-OMe and Boc-(D -aIle)n-OMe (n = 2–6) were synthesized in a standard stepwise fashion and their uv and CD spectra in 2,2,2-trifluoroethanol, and solid-state ir spectra were investigated. In addition, two oligomeric products derived from the NCAs of L -isoleucine and of D -allo-isoleucine and having a DP of 20 and 12, respectively, were studied in the solid state by x-ray and ir. No substantial differences between the properties of the diastereomeric oligomers in the solid state were noticed, a β-structure being very likely at least for the Boc-protected hexapeptides and the higher oligomers. In contrast, differences were observed between the spectroscopic properties of the diastereomeric oligopeptides, and especially of the hexapeptides, in trifluoroethanol solution. The different properties of the hexapeptides in solution were related to the existence, in the case of Boc-(L -Ile)6-OMe, of soluble molecular aggregates in which the peptide chains assume the β-conformation. These results provide an additional example of the influence of the configuration of asymmetric carbon atoms of the side chains on the conformational properties of peptide molecules in solution.  相似文献   

5.
In chloroform solution, the D ,L -alternating stereo-co-oligopeptide HCO-L -Phe-(D -Phe-L -Phe)3-OMe (I) forms three major species, two of which are dimeric and one tetrameric. One of the two dimeric species gives a specific set of 1H-nmr signals at 25°C; the other, together with the tetrameric species, gives another set of resonance signals. In a carbon tetrachloride or cyclohexane solution at 25°C, I forms virtually only the tetrameric species. From the nmr data, it can be shown that the dimeric and tetrameric species, that are in rapid equilibrium with each other in chloroform solutions, are a right-handed ↑↑β5.6 helical dimer and the head-to-head (formyl-ends-to-formyl-ends) dimerization product of this dimer. It is suggested that the linear gramicidins may also form head-to-head dimers of parallel β helices, as observed for the model oligopeptide I.  相似文献   

6.
The decapeptides Boc-(Aib-L -Ala)5-OMe and Boc-(Aib-L -Val)5-OMe have been studied by 270-MHz 1H-nmr in CDCl3 and (CD3)2SO solutions. Intramolecular hydrogen-bonded NH groups have been delineated using the temperature and solvent dependence of the NH chemical shifts and differential broadening of the NH resonances, induced by addition of a nitroxide radical. Both peptides have eight solvent-shielded NH groups, suggesting that 310-helical conformations are maintained in the two solvents. In alternating Aib-X sequences, the Aib residues appear to play a dominant role in determining the preferred conformations, overriding the intrinsic stereochemical preferences of the X residues.  相似文献   

7.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
13C-nmr spectra of poly(β-benzyl L-aspartate) containing 13C-enriched [3-13C]L -alanine residues in the solid state were recorded by the cross polarization–magic angle spinning method, in order to elucidate the conformation-dependent 13C chemical shifts of L -alanine residues taking various conformations such as the antiparallel β-sheet, the right-handed α-helix, the left-handed α-helix, and the left-handed ω-helix forms obtained by appropriate treatment. The latter two conformations for L -alanine residues are achieved when L -alanine residues are incorporated into poly(β-benzyl L -aspartate). We found that the alanine Cβ carbon show significant 13C chemical shift displacement depending on conformational change, and gave the 13C chemical shift values at about 17 ppm for the left-handed ω-helix, 14 ppm for the left-handed α-helix, 15.5 ppm for the right-handed α-helix, and 21.0 ppm for the antiparallel β-sheet relative to tetramethylsilane.  相似文献   

9.
The crystal-state molecular structures of five linear Ac3c homo-oligopeptides to the tetramer were determined by x-ray diffraction. The oligomers are H-(Ac3c)2-OMe, Fmoc-(Ac3c)2-OMe MeOH, Ac-(Ac3c)2-OMe, pBrBz-(Ac3c)3-OMe · H2O, and t-Boc-(Ac3c)4-OMe · 2H2O. The results indicate the propensity of the tri- and tetrapeptides to fold into type I β-bends and distorted 310-helices, respectively, in partial contrast to Aib, Ac5c, and Ac6c homo-peptides of comparable main-chain length, where regular type III β-bends and 310-helical structures were found. When the influence of the constraints produced by the intramolecular H bonds of the C10-type is absent, other less common structural features may be observed. The average geometry of the cyclopropyl group of the Ac3c residue is found to be asymmetric and the N? Cα? C′ bond angle significantly expanded from the regular tetrahedral value.  相似文献   

10.
Gramicidin A (gA) is a polypeptide antibiotic, which forms dimeric channels specific for monovalent cations in artificial and biological membranes. It is a polymorphic molecule that adopts a unique variety of helical conformations, including antiparallel double‐stranded ↑↓β5.6 or ↑↓β7.2 helices (number of residues per turn) and a single‐stranded β6.3 helix (the ‘channel form’). The behavior of gA‐Cs+ complex in the micelles of TX‐100 was studied in this work. Transfer of the complex into the micelles activates a cascade of sequential conformational transitions monitored by CD and FT‐IR spectroscopy: At the first step after Cs+ removal, the RH ↑↓β5.6 helix is formed, which has been discussed so far only hypothetically. Kinetics of the transitions was measured, and the activation parameters were determined. The activation energies of the ↑↓β5.6 → β‐helical monomer transition in dioxane and dioxane/water solutions were also measured for comparison. The presence of water raises the transition rate constant ~103 times but does not lead to crucial fall of the activation energy. All activation energies were found in the 20–25 kcal/mol range, i.e. much lower than would be expected for unwinding of the double helix (when 28 H‐bonds are broken simultaneously). These results can be accounted for in the light of local unfolding (or ‘cracking’) model for large scale conformational transitions developed by the P. G.Wolynes team [Miyashita O, Onuchic JN, Wolynes PG. Proc. Natl. Acad. Sci. USA 2003; 100: 12570‐12575.]. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Vibrational CD (VCD) and ir absorption data are reported for a series of films of Boc-(L -Ala)n-OMe homo-oligopeptides (n = 3–7) in the amide I and A regions. The data evidenced a sharp change between n = 3 and n = 4, which parallels the onset of β-structure formation, and another between n = 5 and n = 6, which parallels the full development of β-structure. This represents the first report of the application of VCD to oligopeptide conformation. The data resembled earlier reported film VCD studies of higher-molecular-weight polypeptides of known β-structure.  相似文献   

12.
13.
Catalytic activities of Boc-Asp-β-Ala-Gly-Ser-β-Ala-Gly-His-β-Ala-Gly-OEt(Boc-9-Oet), Boc-Asp-β-Ala-Gly-Ser-β-Ala-Gly-His-β-Ala-Gly-OH(Boc-9-OH), cyclo(Asp-β-Ala-Gly-Ser-β-Ala-Gly-His-β-Ala-Gly) (Cyclic 9) and poly(Asp-β-Ala-Gly-Ser-β-Ala-Gly-His-β-Ala-Gly) (Poly 9) in the Hydrolysis of p-nitrophenyl acetate were investigated in detail and compared with each other and with poly(His-β-Ala-Gly) (Poly 3) which has no Ser and Asp residues. Generally, Poly 3 was less active than the others, which contain Ser and Asp residues together with the His residue. The reaction rate-substrate concentration for Boc-9-OEt, Boc-9-OH. Cyclic 9 and Poly 3 gave straight lines, while that for Poly 9 showed slightly the tendency of saturation at high substrate concentration. The reaction rates were all proportional to the concentration of the peptides. All peptides gave similar, sigmoid-type pH-kcat profiles. The pK values obtained from these pH-kcat profiles agreed fairly well with those of histidine residues obtained from 13C n.m.r. chemical shifts, which suggests that the predominant participating functional group in the catalytic reaction is the imidazole group in the histidine residue. The pK values of the His residue in peptides with the -Asp-β-Ala-Gly-Ser-β-Ala-Gly-His-β-Ala-Gly- sequence were shifted to higher pH region compared with Poly 3, suggesting that the effect of the carboxyl group in the Asp residue and the extents of pK-shift for linear peptides were larger than for Cyclic 9 or Poly 9. The catalytic reaction rates by Boc-9-OEt or Cyclic 9 increased steadily with increase in temperature, while the reaction rate-temperature profiles for Poly 9 and Poly 3 gave the optimum temperatures at around 40–50°C.  相似文献   

14.
The use of 1H-nmr spectroscopy is demonstrated to be a useful analytical method to characterize the structure of synthetic peptides attached to soluble, macromolecular polyoxyethylene (POE) supports in the liquid-phase method (LPM) of peptide synthesis. We report an extensive 360-MHz 1H-nmr study of POE-bound homo-oligo-L -methionine peptides. A combination of high field and selective saturation or Redfield pulse methods allows resolution of individual backbone NH and α-CH resonances of dilute peptides in the presence of strong resonances from macromolecular POE and/or protonated solvents. The nmr spectra for the POE-bound peptides in CDCl3 are qualitatively similar to those of the low-molecular-weight Boc-L -Metn-OMe peptide esters. This corroborates other observations that POE has little effect on peptide stucture. The backbone α-CH region of peptides is overlapped by signals from the terminal oxyethylene group of POE, but the peptide side-chain and low-field backbone NH resonances are well resolved. In trifluoroethanol the Boc-(L -Met)n-NH-POE heptamer and octamer adopt the right-handed α-helical structure, and the present nmr studies provide evidence for two strong intramolecular hydrogen bonds to stabilize the helices. In water, the N-deblocked derivatives, (L -Met)n-NH-POE oligomers adopt β-sheet structure and manifest well-resolved nonequivalent NH resonances with 6–7 Hz 3JNH-CH coupling constants.  相似文献   

15.
Potential energies of conformation of a dipeptide unit with butyl, seryl, threonyl, eysteinyl, and valyl side groups have been computed by using classical energy expressions. The presence of a γ-atom introduces characteristic restrictions on the backbone rotational angles ? and ψ the γ-atom itself is restricted to three staggered positions about the Cα—Cβ bond. The important results are that a γ-carbon in position I (χ1 ? 60°) cannot be accommodated in the standard right-and left-handed α-helices, whereas a γ-oxygen or sulfur could easily be accommodated in the right-handed α-helix. Further, a γ-carbon or a heteroatom in position II (χ1 ? 180°) does not favor a conformation ψ ? 180°, compared to two other positions. The valyl side group significantly reduces the allowed ? and ψ values and energetically prefers a β-conformation compared to right-or left-handed α-helical conformations. The less favorable α-helical conformation is possible only for γ (III, II) combination of the valyl residue. The observed ?, ψ, and χ1 values of all the amino acid residues in the three protein molecules, lysozyme, myoglobin, and chymotrypsin are compared with the theoretical predictions and the agreement is excellent. The results bring out the important fact that even in large molecules, the conformation of local segments are predominantly governed by the short-range intramolecular interactions.  相似文献   

16.
It has already been show that the helix senses of poly(β-benzyl L -aspartate) and poly(β-methyl L -aspartate) are left-handed, while the poly esters of n-propyl, isopropyl, n-butyl, and phenethyl L -asparate are all right-handed. The effect of changes in helix sense from the left-handed to the right-handed α-helical form on the infrared spectra of copolymers of benzyl L -aspartate with ethyl, n-butyl, isopropyl, n-propyl, and phenethyl L -aspartate have been studied. Those show that for the right-handed helical form the amide band frequencies fall within the range given by Elliott,7 while for the left-handed form the frequencies are higher. The frequency ranges for the two helix senses are given and have been used to show that poly (β-n-propyl L -aspartate) in chloroform solution undergoes a transition from the right-handed to the left-handed helix form on heating. Polarized infrared studies of the different copolymers show that the disposition of the side chain ester groups is different for the two forms. Although methyl L -aspartate forms a left-handed α-helix similar to benzyl L -aspartate, the introduction of methyl L -aspartate residues into poly (β-benzyl L -aspartate) prevents the formation of the ω-helix. The factors involved in the formation of this helix form are discussed.  相似文献   

17.
Navarro E  Fenude E  Celda B 《Biopolymers》2004,73(2):229-241
Alternating sequences of D and L residues in peptides are directly related to the formation of several kinds of regular helical conformations usually called beta-helices. The major feature of these structures is that they can be associated with the transmembrane ion-conducting channel activity in some natural antibacterial peptides. The study of alternating D,L synthetic peptides is critical to understand how factors such as surrounding media, main chain length, type of side chain and terminal groups, among others, can determine the adoption of a specific kind of beta-helix. Early studies pointed out that the peptides Boc-(D-NLeu-L-NLeu)(6)-D-MeNLe-L-Nl-D-Nl-L-Nl-OMe (Boc: tert-butyloxycarbonyl) and Boc-L-Nle-(D-Nle-L-Nle)(5)-D-MeNle-L-Nle-D-Nle-L-Nle-OMe adopt in chloroform a unique detectable conformation single beta(4.4)- and double beta(5.6) upward arrow downward arrow -helix, respectively. The influence of terminal groups on the final stable conformation of N-formylated peptides has been studied in this work. The initial basic NMR data analysis of a synthetic alternating D,L-oligopeptide with ten norleucines, N-methylated on the residue 7 and having HCO- and -OMe as terminal groups clearly indicates the coexistence of two different conformations in equilibrium. NMR data and molecular dynamics calculations point to a dimeric antiparallel beta-helix structure beta(5.6) upward arrow downward arrow for the main conformation. On the other hand, NMR data suggest a single beta-helix structure beta(4.4) for the second conformation. Finally, a thermodynamic analysis of the equilibrium between both conformations has been carried out by one-dimensional NMR measurements at ten different temperatures. The temperature at which 50% of dimer conformation is dissociated is 319 K. In addition, the dimer-monomer equilibrium curve obtained shows a DeltaG>0 for the whole range of studied temperatures, and its behavior can be considered similar to the thermodynamic denaturation protein processes.  相似文献   

18.
An Wang 《Carbohydrate research》2010,345(9):1216-7185
We describe here the synthesis of two oligosaccharide fragments of the tumor associated carbohydrate antigen LeaLex. While the linear lacto-N-triose I: β-d-Galp-(1→4)-β-d-GlcNAcp-(1→3)-β-d-Galp-OMe is a known compound, this is the first reported preparation of the branched tetrasaccharide β-d-GlcNAcp-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-β-d-GlcNAcp-OMe. Our synthetic schemes involved using an N-trichloroacetylated trichloroacetimidate glucosaminyl donor activated with excess TMSOTf at 0 °C for glycosylation at O-3 of galactosyl residues and that of trichloroacetimidate galactosyl donors activated with excess BF3·OEt2 to glycosylate either O-3 or O-4 of glucosamine residues. The fucosylation at O-3 of the glucosamine acceptor was accomplished using a thiofucoside donor activated with copper(II) bromide and tetrabutylammonium bromide. Thus, syntheses of the protected tri- and tetrasaccharides were achieved easily and efficiently using known building blocks. Of particular interest, we also report that these protected oligosaccharides were submitted to dissolving metal conditions (Na-NH3) to provide in one single step the corresponding deprotected compounds. Under these conditions all protecting groups (O-acyl, benzylidene, benzyl, and N-trichloroacetyl) were efficiently cleaved. The work-up procedure for such reactions usually involves quenching with excess methanol and then neutralization with acetic acid. In our work the neutralization was carried out using acetic anhydride rather than acetic acid to ensure N-acetylation of the glucosamine residue. Both fully deprotected compounds were then simply purified and desalted by gel permeation chromatography on a Biogel P2 column eluted with water.  相似文献   

19.
High-molecular-weight poly(0,0′-dicarbobenzoxy-L -β-3,4-dihydroxyphenyl-α-alanine) was prepared by the N-carboxyanhydride method. From the results obtained by a study of the optical rotation, nuclear magnetic resonance, and solution infrared absorption, the conformation of poly(0,0′-dicarbobenzoxy-L -β-3,4-dihydroxyphenyl-α-alanine) depended greatly on the solvent taking a right-handed helix with [θ]225 = ?13,600 ~ ?18,900 in alkyl halides, a left-handed helix with [θ]228 = 22,100 ~ 24,800 in cyclic ethers or trimethylphosphate, and a random coil structure in dichloroacetic acid, trifluoroacetic acid, or hexafluoroacetone sesquihydrate. The polypeptide underwent a right-handed helix-coil transition in chloroform/dichloroacetic acid (or trifluoroacetic acid) mixed solvents and a left-handed helix-coil transition in dioxane/dichloroacetic acid (or trifluoroacetic acid) mixed solvents. The results were compared with those of poly(0-carbobenzoxy-L -tyrosine).  相似文献   

20.
β-Alanine synthase (βAS) is the third enzyme in the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of the nucleotide bases uracil and thymine in higher organisms. It catalyzes the hydrolysis of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyrate to the corresponding β-amino acids. βASs are grouped into two phylogenetically unrelated subfamilies, a general eukaryote one and a fungal one. To reveal the molecular architecture and understand the catalytic mechanism of the general eukaryote βAS subfamily, we determined the crystal structure of Drosophila melanogaster βAS to 2.8 Å resolution. It shows a homooctameric assembly of the enzyme in the shape of a left-handed helical turn, in which tightly packed dimeric units are related by 2-fold symmetry. Such an assembly would allow formation of higher oligomers by attachment of additional dimers on both ends. The subunit has a nitrilase-like fold and consists of a central β-sandwich with a layer of α-helices packed against both sides. However, the core fold of the nitrilase superfamily enzymes is extended in D. melanogaster βAS by addition of several secondary structure elements at the N-terminus. The active site can be accessed from the solvent by a narrow channel and contains the triad of catalytic residues (Cys, Glu, and Lys) conserved in nitrilase-like enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号