首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A glycoprotein (GP72) has been isolated from Trypanosoma cruzi and found to contain 41% protein, 49% carbohydrate and 10% phosphate. All phosphate was covalently attached to the carbohydrate which contained the following sugars: ribose, xylose, fucose, galactose, mannose, glucose and glucosamine. The carbohydrate side chains were linked to protein by fucose, xylose and N-acetylglucosamine; 50% of the total N-acetylglucosamine was involved in glycoprotein linkages. Two classes of carbohydrate side chains were detected. One class comprised 15% of the total carbohydrate and contained glucosamine, mannose and galactose; some of these chains were phosphorylated. The other class comprised 85% of the total carbohydrate and contained xylose, ribose, fucose, galactose, mannose, glucosamine and phosphate; these chains were antigenic and reacted with a monoclonal antibody with specificity for the whole glycoprotein.  相似文献   

2.
Biosynthesis of the Sindbis Virus Carbohydrates   总被引:16,自引:14,他引:2       下载免费PDF全文
The sequence in which sugars are added to the Sindbis virus glycoproteins was studied. Infected cells contain three glycosylated virus-specific proteins: the two virion glycoproteins and the immediate precursor to the smaller virion glycoprotein. Larger Sindbis-specific proteins are not glycosylated. The cell-associated forms of both of the virion glycoproteins contain glucosamine, mannose, galactose, and fucose. The glycosylated precursor contains only glucosamine, mannose, and some galactose. The conversion of precursor to virion protein involves both the addition of galactose and fucose and the loss of mannose. The apparent extent of glycosylation of each virus-specific protein is not influenced by the host cell.  相似文献   

3.
The cross-reacting antigenic determinant in the variant surface glycoproteins (VSGs) of Trypanosoma equiperdum was studied by testing the ability of VSG glycopeptides to bind heterologous anti-VSG sera. VSG glycopeptide purification revealed the presence of 3 oligosaccharide sidechains on the mature VSG. These consist of two sidechains containing only mannose and glucosamine and a third containing galactose and mannose (in a 5:1 ratio) as well as phosphorous and ethanolamine. This phosphorylated fragment completely blocked the binding of VSG to heterologous anti-VSG and therefore contained the cross-reacting determinants.  相似文献   

4.
SYNOPSIS. The carbohydrate of variant-specific surface antigen glycoproteins from bloodstream forms of 13 cloned variants of Trypanosoma brucei was analyzed by gas-liquid chromatography. The glycoproteins contained from 6 to 17% carbohydrate by weight, and all contained the same 4 sugars: mannose, galactose, glucose, and glucosamine (probably as N-acetyl-glucosamine). The glycoprotein from variant 048, strain 427 contained (±20%) 11 mannose, 4 galactose, 4 glucose, and 5 glucosamine residues/mole of glycoprotein (molecular weight 65,000). Glucose was an integral component of the glycoproteins, not dissociable by sodium dodecyl sulphate, 8 M urea, or 1 M acetic acid. Some of the glucose was dissociated by trichloroacetic acid. Most of the glycoproteins formed precipitin bands with concanavalin A in Ouchterlony double diffusion, but none formed such bands with wheat germ agglutinin or Ricinus communis lectin (molecular weight 120,000).  相似文献   

5.
The carbohydrate of variant-specific surface antigen glycoproteins from bloodstream forms of 13 cloned variants of Trypanosoma brucei was analyzed by gas-liquid chromatography. The glycoproteins contained from 6 to 17% carbohydrate by weight, and all contained the same 4 sugars: mannose, galactose, glucose, and glucosamine (probably as N-acetylglucosamine). The glycoprotein from variant 048, strain 427 contained (+20%) 11 mannose, 4 galactose, 4 glucose, and 5 glucosamine residues/mole of glycoprotein (molecular weight 65,000). Glucose was an intergral component of the glycoproteins, not dissociable by sodium dodecyl sulphate, 8 M urea, or 1 M acetic acid. Some of the glucose was dissociated by trichloroacetic acid. Most of the glycoproteins formed precipitin with concanavalin A in Ouchterlony double diffusion, but none formed such bands with wheat germ agglutinin or Ricinus communis lectin (molecular weight 120, 000).  相似文献   

6.
The kinetics of incorporation of leucine, galactose and mannose into intracellular and secreted myeloma protein, MOPC 21 IgG(1) and MOPC 46 kappa-type light chain, by cell suspensions of two myeloma plasma-cell tumours, MOPC 21 and MOPC 46, were similar. Radioactive galactose was incorporated to over 90% into galactose residues of intracellular and secreted protein, mannose to over 90% into glucosamine and mannose residues of intracellular protein and to over 90% into glucosamine, mannose and fucose residues of secreted protein, but not into galactose residues. The results show that specific residues in the carbohydrate portion of myeloma proteins can be labelled by specific radioactive monosaccharides, and suggest that fucose residues are added, while myeloma protein is in its final stage of secretion from the plasma cell. The kinetics of incorporation indicate at least three sequential precursor-product relationships between different intracellular forms and the secreted form of myeloma protein.  相似文献   

7.
The glycoproteins of Semliki Forest virus, grown in chicken embryo cells, were labeled with radioactive sugars. The data indicate a high mannose content of the nonstructural precursor glycoprotein NSP 63. This protein can also be readily labeled with 2-deoxy-D-glucose. The envelope glycoproteins E1 and E2 are relatively rich in galactose, glucosamine, and fucose. Glycosylation can be impaired by 2-deoxy-D-glucose or D-glucosamine or by omission of sugars in the culture medium. Under these conditions characteristic changes in the electrophoretic profile of the viral polypeptides are observed: in the regions of glycoproteins NSP 97, NSP 63, and E1 and E2 new protein peaks can be detected. These polypeptides seem to be aberrant forms of the glycoproteins. When compared with the normal molecules they have lower molecular weights and contain less carbohydrates, especially mannose. Pulse-chase experiments indicate that the altered glycoproteins are degraded very slowly if at all. If, however, impairment is caused by omission of sugars in the culture medium, the radioactivity is chased after addition of glucose from the region between NSP 63 and E1 + E2 into the E1 + E2 peak. This suggests a completion of the carbohydrate chains under these conditions.  相似文献   

8.
From cells of a nullipotential line of embryonal carcinoma was isolated a membrane fraction enriched in the cell surface F9 antigen. More than 40% of the radioactive fucose and galactose incorporated by cells into nondialyzable material was recovered in this membrane preparation, corresponding to an approximately 10-fold purification of the labeled material. Extreme heterogeneity of membrane glycoproteins labeled with these sugars was revealed by sodium dodecyl sulfate gel electrophoresis. Glycopeptides prepared by extensive pronase digestion of membranes labeled with fucose or galactose showed properties similar to those already described for fucose-labeled glycopeptides from whole cells. Namely, large glycopeptides eluted near the excluded volume of Sephadex G-50 column were the predominant glycopeptide species, while complex glycopeptides of molecular weight around 2500 were minor components. Therefore, these large glycopeptides, characteristic of embryonal carcinoma cells, are derived mainly from a variety of glycoproteins closely associated with the membrane system, most probably cell-surface membrane of the cells. The large glycopeptides were also significantly labeled with glucosamine, but only slightly with mannose; major components of mannose-labeled glycopeptides from the membranes were high-mannose glycopeptides of low molecular weight. Several experiments excluded the possibility that the larg glycopeptides are mucopolysaccharides, glycolipids or mucin-type glycoproteins with short oligosaccharide chains.  相似文献   

9.
This is the first report establishing the existence of glycolipids synthesized by plasmodia, in particular Plasmodium falciparum. Trophozoites, schizonts, gametocytes, and gametes were metabolically labeled in vitro with [3H]glucosamine, [3H]galactose, [3H]glucose, [3H]mannose, [3H]fucose, [32P]inorganic phosphate, or [35S]sulfate, and total lipid extracts analyzed by high-performance thin-layer chromatography and autoradiography or fluorography. Parasites incorporated [3H]monosaccharides into distinctly different series of molecules previously undescribed. Three properties of [3H]glucosamine labeled molecules indicate they are glycolipids. First, labeled molecules have lipid solubility properties. Second, mobility on thin-layer chromatography was characteristic of glycolipids. Third, following acid hydrolysis, [3H]glucosamine was recovered from a total lipid extract of labeled parasites demonstrating that glucosamine is a constituent of some of these lipid molecules. Most of these glycolipids are neutral and alkali labile. The majority of these glycolipids differs from several synthesized phospholipids. None of these glycolipids was sulfated. Plasmodial glycolipid synthesis occurs concomitantly with glycoprotein synthesis, and both increase during schizogony. Many of these glycolipids appear to be identical among three strains of P. falciparum and between two species, P. falciparum and P. knowlesi. In contrast, there are stage specific differences in glycolipid synthesis among rings, schizonts, gametocytes, and a mixture of gametes plus zygotes of P. falciparum, examples of both erythrocytic and vector forms of the parasite.  相似文献   

10.
Glycosylation of the envelope glycoprotein of vesicular stomatitis virus was examined using virus-infected HeLa cells that were pulse-labeled with radioactive sugar precursors. The intracellular sites of glycosylation and the stepwise elongation of the carbohydrate side chains of the G protein were monitored by membrane fractionation and gel filtration of Pronase-digested glycopeptides. The results with short pulses of sugar label (5 to 10 mtein linkage (glucosamine and mannose) are added to G which was associated with the rough endoplasmic reticulum-enriched membrane fraction, whereas the more distal sugars (galactose, sialic acid, fucose, and possibly more glucosamine) are added in the light-density internal membrane fraction. Accumulation of mature G was observed in the plasma membrane-enriched fraction. The gel filtration studies indicated that the initial glycosylation event may be the en bloc addition of a mannose and glucosamine oligomer, followed by the stepwise addition of the more distal sugars.  相似文献   

11.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

12.
These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.  相似文献   

13.
Using the monoclonal antibody LICR-LON-Fib75.1 coupled to Sepharose as an affinity chromatography column, a membrane glycoprotein with an apparent molecular weight of 18,000 on sodium dodecyl sulfate-polyacrylamide gels has been purified from human red blood cells. The purified protein contained 25% carbohydrate by weight, the predominant sugars being galactose, mannose, and glucosamine. Amino acid analysis indicated that the protein was relatively rich in aspartate, glutamate, valine, and leucine and had a low proline and methionine content. The molecule could be removed from intact red blood cells by trypsin and could be labeled with iodine by lactoperoxidase-catalyzed cell surface iodination of red blood cells. The protein could also be labeled using the lipidsoluble photoactivatable reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl) diazirine) and partitioned into the lower phase of the phase-separable detergent Triton X-114. During size-exclusion chromatography in different detergents alterations were observed in the apparent molecular weight of the protein. These results suggest that this Fib75.1-binding protein is an external red blood cell membrane glycoprotein which is capable of binding detergent. Proteins with a similar molecular weight have also been isolated from two human tumor cell lines by immunoprecipitation with this monoclonal antibody.  相似文献   

14.
The major glycoprotein g2 was purified from three strains of Rous sarcoma virus, representing subgroups A, B, and C. Carbohydrate analysis showed that glucosamine, mannose, galactose, fucose and sialic acid constitute 40% of the weight of the subgroup A glycoprotein and 15% of the subgroup B and C glycoproteins. The molar ratios of sugars were very similar and amino acid compositions were similar but not identical for the three glycoproteins. Glycosidase digestions of subgroup A and C glycoproteins suggested the presence of two types of oligosaccharide chains, the complex serum type, with terminal sequences sialic acidα-Galβ-GlcNAcβ- and the high mannose type with terminal α-linked mannosyl residues. After removal of 70% of the carbohydrate by glycosidases, subgroup A glycoprotein contained only glucosamine and mannose, in the molar ratio 2.0:1.3. The sequence of sugar release was consistent with oligosaccharide structures such as those which have been described for other glycoproteins. The plant lectins concanavalin A and wheat germ agglutinin were shown to interact strongly with the g2 glycoprotein from viruses of all three subgroups.  相似文献   

15.
The energy-transducing ATPase and a low-molecular-weight fraction ofMicrococcus lysodeikticus membranes incorporated14C label fromd-[U-14C]glucose fed to the bacteria in synthetic medium. The specific radioactivity of the sugar portion of the ATPase and low-molecular-weight fraction was, respectively, 2.65 and 2.88 times that of their amino acids. Glucose and mannose in approximately equimolar amounts were identified as the main sugars of the glycoprotein ATPase, thus confirming previous structural studies. Glucose, galactose, and mannose (1:1:2) were identified as the main sugars of the low-molecular-weight glycopeptides. These results confirm and extend the notion that glycoprotein are constituents of prokaryotic membranes.  相似文献   

16.
Porcine pancreatic α-amylase (α-1,4 glucan 4-glucanohydrolase, EC 3.2.1.1) is shown to be a glycoprotein. Both molecular forms I and II of amylase contain 0.75 mole of fucose, 0.45 mole of galactose and 0.52 mole of mannose per mole of enzyme. Analyses of amino sugars indicate 1.2 and 0.8 residues of glucosamine bound per mole of amylase I and amylase II, respectively. A method for identification and quantitation of neutral sugars by gas chromatography of the trimethylsilyl derivatives of their corresponding alditols is proposed.  相似文献   

17.
The seed globulins of Lupinus angustifolius are glycoproteins containing 1.4–1.9% (α-conglutin), 2.8–6.4 % (β-conglutin) and 1.2–3.8% (γ-conglutin) carbohydrate. The highest values were obtained after acid hydrolysis and determination by phenol—H2SO4, (α, γ-conglutins) or by methanolysis and sugar determination by GLC (β-conglutin). TCA denaturation of β- and γ-conglutins was necessary to remove adsorbed galactomannans before determination of glycoprotein carbohydrates. All 3 conglutins contained mannose, galactose and glucosamine, though the ratio of mannose to galactose, and to a lesser extent neutral sugars to hexosamine varied. Small amounts of fucose were found associated only with γ-conglutin.  相似文献   

18.
Carbohydrate Composition of Vesicular Stomatitis Virus   总被引:15,自引:11,他引:4       下载免费PDF全文
Analysis by gas-liquid chromatography of the trimethylsilylated sugar residues of purified vesicular stomatitis virus grown in L cells or chick embryo cells revealed the presence in the whole virion of four hexoses (glucose, galactose, mannose, and fucose), two hexosamines (glucosamine and galactosamine), and 34 to 40% neuraminic acid. The isolated viral glycoprotein was devoid of galactosamine and fucose, both of which sugars were present in whole virions presumably as part of the membrane glycolipids.  相似文献   

19.
Monoclonal antibody 13 alpha C5-1-A11 immunoprecipitated two major polypeptides of molecular weights 108,000 and 120,000 from extracts of herpes simplex virus type 2-infected BHK-21 cells labeled with [35S]methionine or [3H]glucosamine. In pulse-chase experiments, both labels were chased from the 120,000-molecular-weight peptide (120K peptide) into the 108K molecule. Endoglycosidase H (endo H) reduced the 120K peptide to a 112K peptide but did not affect the 108K peptide. Similar profiles were obtained with monoclonal antibody AP-1 which reacts with a 92K glycoprotein, gG, which maps to the short unique region of the genome. Cross-absorption experiments indicated that both antibodies reacted with the same peptides, suggesting that the 120K peptide is a partially glycosylated high-mannose-type precursor of gG (pgG1). Immunoprecipitation from monensin-treated cells indicated that pgG1(120K) may undergo peptide cleavage to form a 74K high-mannose-type peptide (pgG2) and that this 74K peptide may be further processed into an endo H-resistant 110K to 116K peptide. In the presence of tunicamycin, gG(108K) was replaced by 110K and 105K peptides which were resistant to both endo H and endoglycosidase F. The 105K peptide was the only molecule labeled by [3H]galactose or [3H]glucosamine in the presence of tunicamycin, and none of the peptides were labeled with [3H]mannose, indicating the probable presence of O-linked sugars in the 105K peptide. Our results imply that cotranslational glycosylation of the unglycosylated precursor 110K peptide results in the high-mannose-type pgG1(120K), which probably undergoes peptide cleavage. This putative cleavage product may then mature into gG (108K) by the trimming of sugars and the addition of complex and probably O-linked sugars; the high-mannose-type pgG2(74K) is probably an intermediate peptide formed in this process.  相似文献   

20.
1. The composition of the hypobranchial mucin from Buccinum undatum is reported. 2. The amino acid composition was determined; aspartic acid and glutamic acid contribute almost 24% of the total amino acids in the mucin. 3. Serine, threonine and alanine, in the proportions 2:1:1 respectively, were detected as N-terminal residues, implying the presence of at least four protein chains. 4. A glycoprotein component was isolated by phenol precipitation. 5. The glycoprotein contained 8% of neutral sugars comprising glucose, galactose, mannose and fucose, and 4.5% of hexosamine, comprising glucosamine and galactosamine in equal proportions. 6. A method is described for the preparation of glycopeptides from the glycoprotein. 7. The comparative biochemistry of the mucin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号