首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

2.
D. Motzko  A. Ruthmann 《Chromosoma》1990,99(3):212-222
The fate of intracellular membranes stained by the osmium ferricyanide (OsFeCN) procedure was followed from premeiotic interphase to interkinesis inDysdercus intermedius. During diakinesis the centrioles forming primary cilia attach temporarily with their proximal ends to the nuclear envelope which is stretched from pole to pole. Breakdown of the nuclear envelope is preceded by deep indentations with microtubules from growing asters. Vesicles of smooth endoplasmic reticulum which accumulate gradually in the course of prophase contribute to the ensheathment of the chromosomes with membranes. When the nuclear envelope breaks down, the polar parts of the formerly perinuclear membranes follow the ingrowth of the spindle microtubules towards the cell equator where the seven bivalents are arranged in a circle with the X1X2 sex chromosomes in the centre. The metaphase I spindle thus contains longitudinally oriented membranes between the poles, membranous envelopes around all chromosomes and radial connections from the autosomes to the sex chromosomes in the centre. At anaphase the homologues leave their common sheath and a microtubular stembody surrounded by membranes appears between the receding dyads. In the interkinetic nucleus the gonosomes are separated from the autosomes by a common membranous sheath which may be instrumental in their joint assignment to only one pole in the second meiotic division. Calcium sequestering sites visualized by oxalate precipitation are the Golgi lamellae and vesicles derived from them that surround the whole spindle body.  相似文献   

3.
The endoplasmic reticulum (ER) of plant cells undergoes a drastic reorganization during cell division. In tobacco NT-1 cells that stably express a GFP construct targeted to the ER, we have mapped the reorganization of ER that occurs during mitosis and cytokinesis with confocal laser scanning microscopy. During division, the ER and nuclear envelope do not vesiculate. Instead, tubules of ER accumulate around the chromosomes after the nuclear envelope breaks down, with these tubules aligning parallel to the microtubules of the mitotic spindle. In cytokinesis, the phragmoplast is particularly rich in ER, and the transnuclear channels and invaginations present in many interphase cells appear to develop from ER tubules trapped in the developing phragmoplast. Drug studies, using oryzalin and latrunculin to disrupt the microtubules and actin microfilaments, respectively, demonstrate that during division, the arrangement of ER is controlled by microtubules and not by actin, which is the reverse of the situation in interphase cells.  相似文献   

4.
Gametophyte germlings from unialgal cultures of Membranoptera platyphylla were examined with the electron microscope. The events of mitosis were observed in dividing cells near the thallus apex. In prophase the nucleus is spindle-shaped and surrounded by microtubules and a layer of endoplasmic reticulum. A unique organelle, the polar ring, is present at each pole; its junction is not clear. At metaphase the nuclear envelope is intact except for fenestrations at the poles. Spindle microtubules are attached to distinct kinetochores on the chromosomes and continuous pole-to-pole microtubules are present. The nucleolus has dispersed but, its granular components are still evident in the nucleoplasm. As the chromosomes separate, the nucleus elongates and finally constricts in the middle to produce 2 daughter nuclei.  相似文献   

5.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

6.
Summary During mitosis in multinucleated agamonts ofAllogromia laticollaris the nucleolar substance cannot be demonstrated in the nuclei, but only in the cytoplasm as large opaque bodies, some of which are surrounded by two membranes. Only a few smaller bodies are still present within vacuoles of young agamonts formed subsequent to the dividing state. Since the nuclear envelope persists during karyokinesis, the division spindle is localized intranuclearly. The component continuous microtubules, which prefer the nuclear periphery, are mostly visible as bundles, whereas the microtubules running to the chromosomes appear single and less numerous. Centrosomes can be noticed not only at elongated but also at ovoid or irregularly shaped nuclei. These centrosomes represent round or elliptic bodies surrounded by a membrane and consist of granular and fibrillar material. They occur within the perinuclear space and are restricted to the state of karyokinesis.  相似文献   

7.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

8.
Summary A unique spindle apparatus develops during mitosis in the micronucleus ofParamecium bursaria. During interphase the micronucleus contains short microtubule profiles and clumps of condensed chromatin. Throughout mitosis the nuclear envelope remains intact. During prophase, cup-shaped structures termed microlamellae develop in close association with regions of condensed chromatin. Each micromella consists of an outer sublamella, an inner sublamellae, and ring-shaped structures termed microsepta that join the two sublamellae. Microtubules elongate parallel to the division axis. During metaphase, the microlamellae appear to act as kinetochorelike structures that aid in the alignment of the chromosomes. The microlamellae appear conical and join to a meshwork of microfilaments at their apices. Further toward the polar regions the microfilaments join with microtubules that converge and terminate near the nuclear envelope. During metaphase-anaphase and anaphase the chromosomes are apparently moved by the microfilaments pulling on the kinetochorelike microlamellae. Also during metaphase-anaphase, extranuclear microtubules join the nuclear envelope of the micronucleus to microtubule elements of the cell cortex. By anaphasetelophase, microlamellae and the microfilament meshwork degenerate and microtubules represent the only spindle elements. The evidence of this report supports the hypothesis that microfilaments can participate with microtubules in the movement of chromosomes.This report is part of a Ph.D. Thesis presented by the senior author at Fordham University.  相似文献   

9.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

10.
During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1–3-μm fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis.  相似文献   

11.
Mitosis of the free-living flagellate Bodo saltans of the Ps+ strain characterized by the presence of prokaryotic cytobionts in the perinuclear space was studied. Division of B. saltans Ps+ nuclei occurs by the closed intranuclear type of mitosis without condensation of chromosomes. At the initial stages of nuclear division, consecutive anlage of two spatially separated microtubular spindles begins. The spindle containing about 20 microtubules appears first, then, at an angle of 30–40° to it, the second spindle containing half as many microtubules is formed. The microtubules of the first spindle are associated with 4 pairs of kinetochores, the microtubules of the second one—with 2 pairs. The kinetochores of B. saltans Ps+ have a pronounced laminar structure. Both spindles rest with their ends directly on the internal membrane of the nuclear envelope and form 4 well-pronounced poles. The equatorial phase of mitosis in B. saltans Ps+ is not revealed. The divergence of sister kinetochores towards the poles occurs independently in each spindle. At the elongation phase of mitosis, the poles of both spindles are united in pairs to form a single bipolar structure composed of two loose bundles of microtubules. At this stage of nuclear division, the kinetochores reach the poles of the subspindles and cease to be visible. At subsequent nuclear division stages the nucleus acquires a dumbbell shape. During the reorganization phase the sister nuclei are separated. In the perinuclear space of the interphase nuclei of B. saltans Ps+, 1–2 prokaryotic cytobionts are present. In the course of mitosis, these organisms divide intensively, such that their number can reach 20 and more per nucleus. During separation of sister nuclei, the “excessive” cytobionts are released into the cytoplasmic vacuoles formed by external membranes of the nuclear envelope.  相似文献   

12.
The structure and distribution of cytoplasmic membranes during mitosis and cytokinesis in maize root tip meristematic cells was investigated by low and high voltage electron microscopy. The electron opacity of the nuclear envelope and endoplasmic reticulum (ER) was enhanced by staining the tissue in a mixture of zinc iodide and osmium tetroxide. Thin sections show the nuclear envelope to disassemble at prophase and become indistinguishable from the surrounding ER and polar aggregations of ER. In thick sections under the high voltage electron microscope the spindle is seen to be surrounded by a mass of tubular (TER) and cisternal (CER) endoplasmic reticulum derived from both the nuclear envelope and ER, which persists through metaphase and anaphase. At anaphase strands of TER traverse the spindle between the arms of the chromosomes. The octagonal nuclear pore complexes disappear by metaphase, but irregular-shaped pores persist in the membranes during mitosis. It is suggested that these form a template for pore-complex reformation during telophase. Phragmoplast formation is preceded by an aggregation of TER across the spindle at anaphase. Evidence is presented to suggest that the formation of the desmotubule of a plasmodesma is by the squeezing of a strand of endoplasmic reticulum between the vesicles of the cell plate.Abbreviations CER cisternal endoplasmic reticulum - ER endoplasmic reticulum - HVEM high voltage electron microscope - TER tubular endoplasmic reticulum - ZIO zinc iodide/osmium tetroxide  相似文献   

13.
In the present work, we followed the several phases of Tritrichomonas foetus and Trichomonas vaginalis cell cycles using immunofluorescence, serial thin sections, three-dimensional (3D) reconstruction, and transmission electron microscopy. In motile trichomonad cells or in pseudocyst forms, the nuclear envelope persists throughout mitosis, and the spindle is extranuclear. We found three types of spindle microtubules: pole-to-nucleus microtubules which are attached to the nuclear envelope, pole-to-pole microtubules forming a cylindrical, cytoplasmic groove on the nuclear compartment in pseudocysts of T. foetus cells, and pole-to-cytosol microtubules which extend freely into the cytoplasm. We demonstrated that: (1) in T. foetus, the spindle is assembled from an MTOC located at the base of the costa, underneath one of the basal bodies; (2) the spindle presents an unusual arc shape during the initial phases of mitosis in motile trophozoites; (3) the spindle microtubules are glutamylated, but not acetylated; (4) several membranes similar to those of the endoplasmic reticulum follow the spindle microtubules; (5) finger-like projections extend from the nucleus towards the cell poles in pseudocysts and multinucleated cells; and (6) vesicles formed in between the two nuclear membranes are seen in the course of mitosis in both trophozoite and pseudocyst forms.  相似文献   

14.
15.
Fine structure of gametocytes and oocyst formation of Sarcocystis sp. from Quiscalus quiscula Linnaeus grown in cultured embryonic bovine kidney cells was studied. Microgametocytes measured up to ~5 μm diameter. During nuclear division of the microgametocyte, dense plaques were found adjacent to the nucleus just beneath the pellicle; occasionally microtubules were present within these plaques. These microtubules subsequently formed 2 basal bodies with a bundle of 4 microtubules between them. Microgametocytes also contained numerous mitochondria, micropores, granules, vacuoles, and free ribosomes. Each microgamete was covered by a single membrane and consisted of 2 basal bodies, 2 flagella, a bundle of 4 microtubules, a perforatorium, a mitochondrion, and a long dense nucleus which extended anteriorly and posteriorly beyond the mitochondrion. The bundle of 4 microtubules is thought to be the rudiment of a 3rd flagellum. Macrogametes were covered by a double membrane pellicle, and contained a large nucleus (~2.5 μm), vacuoles, and a dilated nuclear envelope connected with the rough endoplasmic reticulum (ER). In young macrogametes (~4 μm), the ER was arranged in concentric rows in the cortical region, and several sizes of dense granules were found in the cytoplasm. However, in later stages (~8 μm) the ER was irregularly arranged and was dilated with numerous cisternae; only large dark granules remained and a few scattered polysaccharide granules were found. No Golgi apparatus or micropores were observed. After the disappearance of dark granules 5 concentric membranes appeared. Four of these fused to form an oocyst wall composed of a dense outer layer (~66 nm thick) and a thin inner layer (~7 nm). The 5th or innermost membrane surrounded the cytoplasmic mass which was covered by a 2-layered pellicle and contained a nucleus, small amounts of ER, large vacuoles, and mitochondria. The sexual stages described greatly resemble those of Eimeria and Toxoplasma.  相似文献   

16.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

17.
The microtubule (Mt) organization in apical cells of Sphacelaria rigidula. as well as in branch initials of S. rigidula and Ectocarpus siliculosus, was studied by immunofluorescence. The apical interphase cells of S. rigidula show an impressive cytoskeleton of Mts, converging on the centrosome(s). A number of Mt bundles are perinuclear, but most of them run in axial orientation from the centrosomes to the cell cortex. The anterior Mt system consists of numerous thin Mt bundles, whereas the posterior system contains fewer and thicker bundles. In cells entering prophase, the cytoplasmic Mts gradually disappear. This process is somewhat faster at the posterior than at the anterior pole of the premitotic nucleus. After mitosis, the cytoplasmic Mts of the apical region appear to be re-organized more rapidly than those of the basal part of the cell. The apical daughter nucleus retains a lobed shape and condensed chromatin for a longer time, and increases considerably in size between telophase and cytokinesis, compared to the basal one. Duplication of the centrosomes proceeds more rapidly in the anterior region of apical cells than in the basal part. During branch formation in S. rigidula and E. siliculosus, a new polarity axis is established, and the Mts extend towards the protrusion into which the nucleus migrates before mitosis. After nuclear division, one of the daughter nuclei is positioned at the tip of the branch, where the apical Mt focussing point is localized.  相似文献   

18.
Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.  相似文献   

19.
Cells of onion and garlic root tips were examined under the electron and phase contrast microscopes after fixation in KMnO4. Special attention was focused on the distribution and behavior of the endoplasmic reticulum (ER) during the several phases of mitosis. Slender profiles, recognized as sections through thin lamellar units of the ER (most prominent in KMnO4-fixed material), are distributed more or less uniformly in the cytoplasm of interphase cells and show occasional continuity with the nuclear envelope. In late prophase the nuclear envelope breaks down and its remnants plus cytoplasmic elements of the ER, which are morphologically identical, surround the spindle in a zone from which mitochondria, etc., are excluded. During metaphase these ER elements persist and concentrate as two separate systems in the polar caps or zones of the spindle. At about this same time they begin to proliferate and to invade the ends of the spindle. The invading lamellar units form drape-like partitions between the anaphase chromosomes. In late anaphase, their advancing margins reach the middle zone of the spindle and begin to fray out. Finally, in telophase, while elements of the ER in the poles of the spindle coalesce around the chromosomes to form the new envelope, the advancing edges of those in the middle zone reticulate at the level of the equator to form a close lattice of tubular elements. Within this, which is identified as the phragmoplast, the earliest signs of the cell plate appear in the form of small vesicles. These subsequently grow and fuse to complete the separation of the two protoplasts. Other morphological units apparently participating in mitosis are described. Speculation is provided on the equal division or not of the nuclear envelope and the contribution the envelope fragments make to the ER of the new cell.  相似文献   

20.
The vesicular compartment of the mitotic apparatus in mammalian cells   总被引:1,自引:0,他引:1  
Intracellular membranes might play an eminent role in regulating several events during mitosis: In this paper the appearance and changing configurations of the vesicular compartment of the mitotic apparatus of HeLa cells was studied from anaphase to telophase. In early prophase electron opaque and transparent membranous vesicles are found in the pericentriolar region outside the nucleus. During prometaphase when the nuclear envelope opens and starts to disappear, an increasing number of these vesicles appears in the mitotic apparatus near the chromosomes. During metaphase vesicles are spread all over the mitotic apparatus, the number of electron opaque vesicles decreases while the total amount of vesicles does not change significantly. Anaphase shows the same pattern of distribution in the half-spindle and in the midbody. In telophase the amount of electron opaque vesicles increases again. They are now found around vacuoles and near the newly appearing Golgi-cisternae. We assume that the electron opaque vesicles are derived from the Golgi- apparatus which disintegrates during prophase and reappears in late telophase. The change in the appearance of the different types of vesicles during metaphase coincides with drastic changes in the ionic milieu in the mitotic apparatus (Wolniak et al., 1983).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号