首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A genetic linkage map of Theobroma cacao (cocoa) has been constructed from 131 backcross trees derived from a cross between a single tree of the variety Catongo and an F1 tree from the cross of Catongo by Pound 12. The map comprises 138 markers: 104 RAPD loci, 32 RFLP loci and two morphologic loci. Ten linkage groups were found which cover 1068 centimorgans (cM). Only six (4%) molecular-marker loci show a significant deviation from the expected 11 segregation ratio.The average distance between two adjacent markers is 8.3 cM. The final genome-size estimates based on two-point linkage data ranged from 1078 to 1112 cM for the cocoa genome. This backcross progeny segregates for two apparently single gene loci controlling (1) anthocyanidin synthesis (Anth) in seeds, leaves and flowers and (2) self-compatibility (Autoc). The Anth locus was found to be 25 cM from Autoc and two molecular markers co-segregate with Anth. The genetic linkage map was used to localize QTLs for early flowering, trunk diameter, jorquette height and ovule number in the BC1 generation using both single-point ANOVA and interval mapping. A minimum number of 2–4 QTLs (P<0.01) involved in the genetic expression of the traits studied was detected. Coincident map locations of a QTL for jorquette height and trunk diameter suggests the possibility of pleiotropic effects in cocoa for these traits. The combined estimated effects of the different mapped QTLs explained between 11.2% and 25.8% of the phenotypic variance observed in the BC1 population.  相似文献   

2.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

3.
A linkage map of the rapeseed genome comprising 204 RFLP markers, 2 RAPD markers, and 1 phenotypic marker was constructed using a F1 derived doubled haploid population obtained from a cross between the winter rapeseed varieties Mansholt's Hamburger Raps and Samourai. The mapped markers were distributed on 19 linkage groups covering 1441 cM. About 43% of these markers proved to be of dominant nature; 36% of the mapped marker loci were duplicated, and conserved linkage arrangements indicated duplicated regions in the rapeseed genome. Deviation from Mendelian segregation ratios was observed for 27.8% of the markers. Most of these markers were clustered in 7 large blocks on 7 linkage groups, indicating an equal number of effective factors responsible for the skewed segregations. Using cDNA probes for the genes of acyl-carrier-protein (ACP) and -ketoacyl-ACP-synthase I (KASI) we were able to map three and two loci, respectively, for these genes. The linkage map was used to localize QTLs for seed glucosinolate content by interval mapping. Four QTLs could be mapped on four linkage groups, giving a minimum number of factors involved in the genetic control of this trait. The estimated effects of the mapped QTLs explain about 74% of the difference between both parental lines and about 61.7 % of the phenotypic variance observed in the doubled haploid mapping population.  相似文献   

4.
Genetic mapping of QTLs controlling horticultural traits in diploid roses   总被引:9,自引:0,他引:9  
A segregating progeny set of 96 F1 diploid hybrids (2n=2x=14) between Blush Noisette (D10), one of the first seedlings from the original Champneys Pink Cluster, and Rosa wichurana (E15), was used to construct a genetic linkage map of the rose genome following a pseudo-testcross mapping strategy. A total of 133 markers (130 RAPD, one morphological and two microsatellites) were located on the 14 linkage groups (LGs) of the D10 and E15 maps, covering total map lengths of 388 and 260 cM, respectively. Due to the presence of common biparental markers the homology of four LGs between parental maps (D10-1/E15-1 to D10-4/E15-4) could be inferred. Four horticulturally interesting quantitative traits, flower size (FS), days to flowering (DF), leaf size (LS), and resistance to powdery mildew (PM) were analysed in the progeny in order to map quantitative trait loci (QTLs) controlling these traits. A total of 13 putative QTLs (LOD>3.0) were identified, four for FS, two for flowering time, five for LS, and two for resistance to PM. Possible homologies between QTLs detected in the D10 and E15 maps could be established between Fs1 and Fs3, Fs2 and Fs4, and Ls1 and Ls3. Screening for pairwise epistatic interactions between loci revealed additional, epistatic QTLs (EQTLs) for DF and LS that were not detected in the original QTL analysis. The genetic maps developed in this study will be useful to add new markers and locate genes for important traits in the genus providing a practical resource for marker-assisted selection programs in roses.  相似文献   

5.
Molecular markers associated with seed weight in two soybean populations   总被引:10,自引:0,他引:10  
Seed weight (SW) is a component of soybean, Glycine max (L.) Merr., seed yield, as well as an important trait for food-type soybeans. Two soybean populations, 120 F4-derived lines of YoungxPI416937 (Pop1) and 111 F2-derived lines of PI97100xCoker 237 (Pop2), were mapped with RFLP makers to identify quantitative trait loci (QTLs) conditioning SW across environments and populations. The genetic map of Pop1 consisted of 155 loci covering 973 cM, whereas Pop2 involved 153 loci and covered 1600 cM of map distance. For Pop1, the phenotypic data were collected from Plains, GA., Windblow, N.C., and Plymouth, N.C., in 1994. For Pop2, data were collected from Athens, GA., in 1994 and 1995, and Blackville, S.C., in 1995. Based on single-factor analysis of variance (ANOVA), seven and nine independent loci were associated with SW in Pop1 and Pop2, respectively. Together the loci explained 73% of the variability in SW in Pop1 and 74% in Pop2. Transgressive segregation occurred among the progeny in both populations. The marker loci associated with SW were highly consistent across environments and years. Two QTLs on linkage group (LG) F and K were located at similar genomic regions in both populations. The high consistency of QTLs across environments indicates that effective marker-assisted selection is feasible for soybean SW.  相似文献   

6.
Mapping quantitative trait loci for seedling vigor in rice using RFLPs   总被引:13,自引:0,他引:13  
Improving seedling vigor is an important objective of modern rice (Oryza saliva L.) breeding programs. The purpose of this study was to identify and map quantitative trait loci (QTL) underlying seedling vigor-related traits using restriction fragment length polymorphisms (RFLPs). An F2 population of 204 plants was developed from a cross between a low-vigor japonica cultivar Labelle (LBL) and a high-vigor indica cultivar Black Gora (BG). A linkage map was constructed of 117 markers spanning 1496 Haldane cM and encompassing the 12 rice chromosomes with an average marker spacing of 14 cM. The length of the shoots, roots, coleoptile and mesocotyl were measured on F3 families in slantboard tests conducted at two temperatures (18° and 25°C). By means of interval analysis, 13 QTLs, each accounting for 7% to 38% of the phenotypic variance, were identified and mapped in the two temperature regimes at a log-likelihood (LOD) threshold of 2.5. Four QTLs controlled shoot length, 2 each controlled root and coleoptile lengths and 5 influenced mesocotyl length. Single-point analysis confirmed the presence of these QTLs and detected additional loci for shoot, root and coleoptile lengths, these latter usually accounting for less than 5% of the phenotypic variation. Only 3 QTLs detected both by interval and singlepoint analyses were expressed under both temperature regimes. Additive, dominant and overdominant modes of gene action were observed. Contrary to what was predicted from parental phenotype, the low-vigor LBL contributed 46% of the positive alleles for shoot, root and coleoptile lengths. Positive alleles from the high-vigor parent BG were identified for increased root, coleoptile and mesocotyl lengths. However, BG contributed alleles with only minor effects for shoot length, the most important determinant of seedling vigor in water-seeded rice, suggesting that it would not be an ideal donor parent for introducing faster shoot growth alleles into temperate japonica cultivars.  相似文献   

7.
The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and Coker 237. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.  相似文献   

8.
We have applied a two-way pseudo-testcross strategy in an analysis of Pinus sylvestris for genetic mapping and detection of quantitative trait loci (QTLs) associated with economically important traits targeted in the Swedish tree-breeding programme. Based on 94 full-sib progeny of a cross between two plus-trees from northern Sweden we generated two parental maps using AFLP markers. The female map was comprised of 94 markers assigned to 15 linkage groups giving a size of 796 cM. On the male map 155 markers were assigned to 15 linkage groups, giving a total size of 1335 cM. The recombination frequency was found to be sex-dependent, being 29.3% higher in male than in female gametes. On the female map, 12 QTLs were detected (but none for branch diameter or wood density). Three QTLs for tree height accounted for 25.8% of the total phenotypic variation of this trait. When the QTLs detected for all the traits were taken independently, the percentages of phenotypic variance ranged from 9.3% to 22.7%. The highest value was observed for frost hardiness, an important trait in northern Sweden for which a major gene seemed to be involved. A cluster of QTLs for tree height, trunk diameter and volume was located on one linkage group. On the male map, four QTLs for trunk diameter and volume were detected. Due to the reduced number of individuals under study, the results are preliminary and have to be validated on more trees.  相似文献   

9.
Resistance to verticillium wilt, a vascular disease causing yield losses in many crops, is conferred in tomato by a single dominant allele, Ve. A population segregating for the Ve allele was generated using near-isogenic tomato lines. Analysis of the parental tomato DNA using the polymerase chain reaction and 400 random primers, each 10 deoxyribonucleotides in length, produced 1,880 amplified DNA fragments. Of the four polymorphisms observed between the resistant and susceptible parental genotypes, only one was linked to the Ve gene. No recombination was observed between this DNA marker and the Ve locus, indicating that the linkage is less than 3.5±2.7 cM. The marker detected both the susceptible and resistant alleles, producing amplified DNA fragments of approximately 1,300 and 1,350 bp, respectively. The sequence of the primer, determined from cloned amplified products, was 5 CTCACATGCA 3 instead of the expected 5 CTCACATGCC 3. The marker will be of value to tomato breeding programs because of the tight linkage, Codominant nature, and analytical procedure utilized.  相似文献   

10.
A detailed linkage map of Helianthus annuus was constructed based on segregation at 234 RFLP loci, detected by 213 probes, in an F2 population of 289 individuals (derived from a cross between the inbred lines HA89 and ZENB8). The genetic markers covered 1380 centiMorgans (cM) of the sunflower genome and were aranged in 17 linkage groups, corresponding to the haploid number of chromosomes in this species. One locus was found to be unlinked. Although the average interval size was 5.9 cM, there were a number of regions larger than 20 cM that were devoid of markers. Genotypic classes at 23 loci deviated significantly from the expected ratios (121 or 31), all showing a reduction in the ZENB8 homozygous class. The majority of these loci were found to map to four regions on linkage groups G, L and P.  相似文献   

11.
A progeny of 77 hybrids issued from a cross between two heterozygous Prunus, peach [P. persica (L.) Batsch] (variety Summergrand) and a related species, P. davidiana (clone 1908), was analysed for powdery mildew resistance in five independent experiments. This population was also analysed for its genotype with isoenzyme and RAPD markers in order to map the genes responsible for resistance. A genetic linkage map was generated for each parent. The Summergrand linkage map is composed of only four linkage groups including 15 RAPD markers and covering 83.1 centiMorgans (cM) of the peach nuclear genome, whereas the P. davidiana linkage map contains 84 RAPD markers and one isoenzyme assigned to ten linkage groups and covering 536 cM. Significant associations between molecular markers and powdery mildew resistance were found in each parent. For P. davidiana, one major QTL with a very strong effect and five other QTLs with minor effects were located in different linkage groups. For Summergrand, three QTLs for powdery mildew resistance, with minor effects, were also detected. Consequently, evidence is given here that the powdery mildew resistance of P. davidiana clone 1908 and P. persica variety Summergrand is not a monogenic character but is controlled by at least one major gene and several minor genes.  相似文献   

12.
Field resistance to Phytophthora infestans (Mont.) de Bary, the causal agent of late blight in potatoes, has been characterized in a potato segregating family of 230 full-sib progenies derived from a cross between two hybrid Solanum phureja × S. stenotomum clones. The distribution of area under the disease progress curve values, measured in different years and locations, was consistent with the inheritance of multigenic resistance. Relatively high levels of resistance and transgressive segregations were also observed within this family. A genetic linkage map of this population was constructed with the intent of mapping quantitative trait loci (QTLs) associated with this late blight field resistance. A total of 132 clones from this family were genotyped based on 162 restriction fragment length polymorphism (RFLP) markers. The genome coverage by the map (855.2 cM) is estimated to be at least 70% and includes 112 segregating RFLP markers and two phenotypic markers, with an average distance of 7.7 cM between two markers. Two methods were employed to determine trait–marker association, the non-parametric Kruskal–Wallis test and interval mapping analysis. Three major QTLs were detected on linkage group III, V, and XI, explaining 23, 17, and 10%, respectively, of the total phenotypic variation. The present study revealed the presence of potentially new genetic loci in this diploid potato family contributing to general resistance against late blight. The identification of these QTLs represents the first step toward their introgression into cultivated tetraploid potato cultivars through marker-assisted selection.  相似文献   

13.
A major gene underlying quantitative resistance of barley against Pyrenophora graminea, a seedborne pathogen causing leaf stripe, was mapped with molecular markers in a barley doubled haploid (DH) population derived from the cross Proctor x Nudinka. This quantitative trait locus (QTL) accounts for r 2= 58.5% and was mapped on barley chromosome 1, tightly linked to the naked gene. A second resistance QTL accounting for 29.3% of the variation in the trait was identified on the P arm of barley chromosome 2. Another two minor QTLs were detected by further analysis. None of the QTLs was found in the barley chromosome 2 Vada region studied by Giese et al. (1993).  相似文献   

14.
Grain protein content (GPC) is an important quality factor in both durum and bread wheats. GPC is considered to be a polygenic trait influenced by environmental factors and management practice. The objectives of this study were both to compare the quantitative trait loci (QTL) for GPC in a population of 65 recombinant inbred lines of tetraploid wheats evaluated in three locations for several years (eight data sets), and to investigate the genetic relationship among GPC and grain yield. QTLs were determined based on the Messapia × dicoccoides linkage map which covers 217 linked loci on the 14 chromosomes with 42 additional loci as yet unassigned to linkage groups. The map extends to 1352 cM; the average distance between adjacent markers was 6.3 cM. Seven QTLs for GPC, located on the chromosome arms 4BS, 5AL, 6AS (two loci), 6BS, 7AS and 7BS, were detected that were significant in at least one environment at P<0.001 or in at least two environments at P<0.01. One QTL was significant in all but one environment, two were significant in four or five environments, and four were significant in two out of eight environments. Six out of seven protein content QTLs had pleiotropic effects or were associated to QTLs for grain yield and explained the negative correlation among GPC and yield components. The present results support the concept that studies conducted in a single environment are likely to underestimate the number of QTLs that can influence a trait and that the phenotypic data for a quantitative trait should be collected over a range of locations to identify putative QTLs and determine their phenotypic effects.  相似文献   

15.
Mucuna pruriens is a well-recognized agricultural and horticultural crop with important medicinal use. However, antinutritional factors in seed and adverse morphological characters have negatively affected its cultivation. To elucidate the genetic control of agronomic traits, an intraspecific genetic linkage map of Indian M. pruriens has been developed based on amplified fragment length polymorphism (AFLP) markers using 200 F 2 progenies derived from a cross between wild and cultivated genotypes. The resulting linkage map comprised 129 AFLP markers dispersed over 13 linkage groups spanning a total distance of 618.88 cM with an average marker interval of 4.79 cM. For the first time, three QTLs explaining about 6.05–14.77% of the corresponding total phenotypic variation for three quantitative (seed) traits and, eight QTLs explaining about 25.96% of the corresponding total phenotypic variation for three qualitative traits have been detected on four linkage groups. The map presented here will pave a way for mapping of genes/QTLs for the important agronomic and horticultural traits contrasting between the parents used in this study.  相似文献   

16.
Quantitative trait loci (QTLs) for three traits related to ear morphology (spike length, number of spikelets, and compactness as the ratio between number of spikelets and spike length) in wheat (Triticum aestivum L.) were mapped in a doubled-haploid (DH) population derived from the cross between the cultivars Courtot and Chinese Spring. A molecular marker linkage map of this cross that had previously been constructed based on 187 DH lines and 380 markers was used for QTL mapping. The genome was well covered (85%) except chromosomes 1D and 4D and a set of anchor loci regularly spaced (one marker each 15.5 cM) were chosen for marker regression analysis. The presence of a QTL was declared at a significance threshold = 0.001. The population was grown in one location under field conditions during three years (1994, 1995 and 1998). For each trait, 4 to 6 QTLs were identified with individual effects ranging between 6.9% and 21.8% of total phenotypic variation. Several QTLs were detected that affected more than one trait. Of the QTLs 50% were detected in more than one year and two of them (number of spikelets on chromosome 2B, and compactness on chromosome 2D) emerged from the data from the three years. Only one QTL co-segregated with the gene Q known to be involved in ear morphology, namely the speltoid phenotype. However, this chromosome region explained only a minor part of the variation (7.5–11%). Other regions had a stronger effect, especially two previously unidentified regions located on chromosomes 1A and 2B. The region on the long arm of chromosome 1A was close to the locus XksuG34-1A and explained 12% of variation in spike length and 10% for compactness. On chromosome 2B, the QTL was detected for the three traits near the locus Xfbb121-2B. This QTL explained 9% to 22% of variation for the traits and was located in the same region as the gene involved in photoperiod response (Ppd2). Other regions were located at homoeologous positions on chromosomes 2A and 2D.  相似文献   

17.
This study was conducted to compare maize quantitative trait loci (QTL) detection for grain yield and yield components in F23 and F67 recombinant inbred (RI) lines from the same population. One hundred and eighty-six F67 RIs from a Mo17×H99 population were grown in a replicated field experiment and analyzed at 101 loci detected by restriction fragment length polymorphisms (RFLPs). Single-factor analysis of variance was conducted for each locus-trait combination to identify QTL. For grain yield, 6 QTL were detected accounting for 22% of the phenotypic variation. A total of 63 QTL were identified for the seven grain yield components with alleles from both parents contributing to increased trait values. Several genetic regions were associated with more than one trait, indicating possible linked and/or pleiotropic effects. In a comparison with 150 F23 lines from the same population, the same genetic regions and parental effects were detected across generations despite being evaluated under diverse environmental conditions. Some of the QTL detected in the F23 seem to be dissected into multiple, linked QTL in the F67 generation, indicating better genetic resolution for QTL detection with RIs. Also, genetic effects at QTL are smaller in the F67 generation for all traits.Abbreviations RFLPs Restriction fragment length polymorphisms - QTL quantitative trait loci - RIs recombinant inbreds Journal Paper no. J-16261 of the Iowa Agric and Home Economics Exp Stn Project no. 3134  相似文献   

18.
The genetic linkage map of European beech (Fagus sylvatica L.) that we report here is the first to our knowledge. Based on a total of 312 markers (28 RAPDs, 274 AFLPs, 10 SSRs) scored in 143 individuals from a F1 full-sib family. Two maps (one for each parent) were constructed according to a two-way pseudo-testcross mapping strategy. In the male map 119 markers could be clustered in 11 major groups (971 cM), while in the female map 132 markers were distributed in 12 major linkage groups (844 cM). In addition, four and one minor linkage groups (doublets and triplets) were obtained for the male and female map respectively. The two maps cover about 82% and 78% of the genome. Based on the position of 15 AFLP and 2 SSR loci segregating in both parents, seven homologous linkage groups could be identified. In the same pedigree we investigated the association with genetic markers of several quantitative traits: leaf area, leaf number and shape in 2 different years, specific leaf area, leaf carbon-isotope discrimination and tree height. A composite interval-mapping approach was used to estimate the number of QTLs, the amount of variation explained by each of them, and their position on the genetic linkage maps. Eight QTLs associated with leaf traits were found that explained between 15% and 35% of the trait variation, five on the female map and three on the male map.Communicated by D. B. Neale  相似文献   

19.
QTL analysis of flower and fruit traits in sour cherry   总被引:2,自引:0,他引:2  
The map locations and effects of quantitative trait loci (QTLs) were estimated for eight flower and fruit traits in sour cherry (Prunus cerasus L.) using a restriction fragment length polymorphism (RFLP) genetic linkage map constructed from a double pseudo-testcross. The mapping population consisted of 86 progeny from the cross between two sour cherry cultivars, Rheinische Schattenmorelle (RS)×Erdi Botermo (EB). The genetic linkage maps for RS and EB were 398.2 cM and 222.2 cM, respectively, with an average interval length of 9.8 cM. The RS/EB linkage map that was generated with shared segregating markers consisted of 17 linkage groups covering 272.9 cM with an average interval length of 4.8 cM. Eleven putatively significant QTLs (LOD >2.4) were detected for six characters (bloom time, ripening time, % pistil death, % pollen germination, fruit weight, and soluble solids concentration). The percentage of phenotypic variation explained by a single QTL ranged from 12.9% to 25.9%. Of the QTLs identified for the traits in which the two parents differed significantly, 50% had allelic effects opposite to those predicted from the parental phenotype. Three QTLs affecting flower traits (bloom time, % pistil death, and % pollen germination) mapped to a single linkage group, EB 1. The RFLP closest to the bloom time QTL on EB 1 was detected by a sweet cherry cDNA clone pS141 whose partial amino acid sequence was 81% identical to that of a Japanese pear stylar RNase. Received: 4 March 1999 / Accepted: 27 August 1999  相似文献   

20.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号