首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Adenylate cyclase activity and the effects of various activators and inhibitors of this enzyme were measured in retinas from normal mice (C57BL/6J) and congenic animals with photoreceptor dystrophy. In normal retina, approximately 250 microM-ATP was required for half-maximal stimulation of the enzyme. Activity was supported by Mg2+ and Mn2+, but Ca2+ was ineffective. The enzyme was inhibited by EGTA and stimulated by 5'-guanylylimidodiphosphate (GPP(NH)P), dopamine, and NaF. The stimulatory effects of GPP(NH)P and dopamine were greater in the presence of EGTA. Examination of microdissected normal retinas revealed that the inner (neural) retina had adenylate cyclase activity four times that of the photoreceptor cell layers, and that EGTA inhibited activity in the inner retina, but had no effect in the outer retina. In dystrophic retinas basal enzyme activity was 60% higher than that in normal retina. The enzyme in this tissue was stimulated by EGTA, GPP(NH)P, and dopamine, and their effects were additive. These results indicate that adenylate cyclase activity in vertebrate retina is under complex regulation by substrate, divalent cations, guanine nucleotides, dopamine, and perhaps calmodulin. In addition, the data demonstrate that adenylate cyclase is not evenly distributed in the retina and that it is regulated differently in the inner and outer retina. Finally, the present results indicate that regulation of this enzyme in dystrophic retina may be qualitatively and quantitatively different from that in normal retina.  相似文献   

2.
The activity of adenosinetriphosphate:nicotinamide adenylyltransferase (EC 2.7.7.1) was measured in all the layers of monkey, rabbit, and ground squirrel retinas. Nicotinamide adenine dinucleotide (NAD) kinase (EC 2.7.1.23) distribution was measured in monkey and rabbit retinas. An attempt was made to measure NAD synthetase (EC 6.3.5.1), but the activities in the retinal layers were too low to produce a reliable increment in the levels of endogenous NAD. In monkey retina the adenylyl transferase was highest by far in the outer and inner nuclear layers, lower and variable in ganglion cell and fiber layers, and almost absent elsewhere. Rabbit retina differed in that activity was nearly absent in the outer nuclear layer, whereas in the ground squirrel outer nuclear layer activity was double that of the inner nuclear layer. The species differences suggest that adenylyl transferase is almost absent from cone cell nuclei and high in rod cell nuclei. NAD kinase distribution in monkey retina was almost the mirror image of that of adenylyl transferase.  相似文献   

3.
The isolated intact white adipocyte of the Swiss mouse responds to both ACTH and catecholamines by an elevation of cAMP levels and an increase in lipolysis. However, in the isolated plasma membrane of the mouse adipocyte, adenylate cyclase loses its responsiveness to ACTH but retains its ability to respond to catecholamines. This lack of responsiveness to ACTH by adenylate cyclase of mouse adipocyte plasma membrane can be overcome, at least partially, by addition of GPP (NH)p, an analog of GTP, to the assay medium. The data on mouse adipocyte membrane suggests that the coupling of ACTH receptor to adenylate cyclase is dependent on GTP and that catecholamine-activation of adenylate cyclase is less dependent on this nucleotide. The isolated intact white adipocyte of adult New Zealand rabbit responds to ACTH, but does not (or only weakly) respond to catecholamines. In contrast to the mouse plasma membrane preparation, adenylate cyclase of adipocyte membrane of the rabbit responds to ACTH. And the addition of GPP(NH)P is not required to demonstrate the CTH: sensitive adenylate cyclase activity. The difference between mouse and rabbit adipocyte membrane in the requirement for GPP(NH)P in ACTH action is not readily explained. The lack of catecholamine sensitivity of rabbit membrane enzyme cannot be reversed by addition of GPP(NH)P or adenosine deaminase. These two adenylate cyclase model systems using mouse and rabbit adipocyte plasma membrane may be useful tools for the study of the specificity and mechanism of action of lipolytic hormones such as ACTH and catecholamines.  相似文献   

4.
The distribution of the components of the cyclic GMP cycle in retina   总被引:3,自引:0,他引:3  
Frozen sections of retinas from rabbit (mostly rods), ground squirrel (mostly cones), and monkey (mixed rods and cones) were freeze dried, and samples from all the discrete layers analyzed for the enzymes which form cyclic GMP and subsequently convert it back to GTP. The distribution of cyclic GMP was also measured in monkey retina, and the retinal layers of both monkey and rabbit were analyzed for GTP, GTP plus GDP, ATP, ATP plus ADP, and UTP plus CTP. The ratio of guanylates to adenylates was found to be about 1:1 in photoreceptor cell layers, but only 1:4 or 5 in deeper layers. In all species, guanylate cyclase (EC 4.6.1.2) and cyclic GMP phosphodiesterase were highest in the outer segment layer. Other layers were lower by factors of 10 to 500. Guanylate kinase (EC 2.7.4.8) was extremely high in all photoreceptor cell layers except the outer segments, but was much lower elsewhere. Nucleoside diphosphokinase (EC 2.7.4.6) paralleled guanylate kinase throughout the photoreceptor cell layers, but did not fall to such low levels in the deeper layers of the retina. Although there were significant differences among the three species, they all displayed the same general enzyme pattern.  相似文献   

5.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   

6.
The influence of detergents on fluoride- and vanadate-stimulated adenylate cyclases was investigated with enzyme from liver and adipocyte plasma membranes. Stimulation of the adipocyte cyclase by Na3VO4 was maximal (sixfold) at 3 mM, was not additive with fluoride stimulation, and was readily reversed by washing of the membranes. Vanadate stimulation of the hepatic cyclase was specifically blocked by catechol, which had no effect on basal activity or on fluoride- or glucagon-stimulated activities. The hepatic enzyme, stimulated by fluoride ion, guanyl-5'-yl-(beta,gamma-imino)diphosphate (GPP(NH)P), or GPP(NH)P and glucagon, was inhibited by vanadate with 50% inhibition seen with 2 to 6 mM vanadate. The fluoride-activated adipocyte adenylate cyclase was inhibited by guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) more potently than by GPP(NH)P, with 50% inhibition being seen with 10 nM GTP gamma S or 100 nM GPP(NH)P. These nucleotides also inhibited the vanadate-stimulated enzyme, but with one-third the potency seen with the fluoride-activated cyclase. Dispersion of the adipocyte cyclase by Lubrol-PX into a 30,000g supernatant fraction caused no change in activation of the enzyme by fluoride, but reduced vanadate-stimulated activity 80%. By comparison, this treatment enhanced stimulation by GPP(NH)P twofold and by GTP gamma S threefold. More importantly, perhaps, the treatment with detergent blocked inhibition of the basal enzyme by GTP, blocked inhibition of fluoride- and vanadate-stimulated cyclases by GTP, GPP(NH)P, or GTP gamma S, and rendered vanadate-stimulated activity sensitive to enhancement by guanine nucleotides. The data indicate differences in the actions of vanadate and fluoride, made evident by the influence of guanine nucleotides and detergent treatment. The observations would be consistent with the idea that the effects of vandate may be due to the formation of GDP X V on the enzyme. The data strongly suggest that treatment of adenylate cyclase with Lubrol-PX causes a functional blockade in the guanine nucleotide-dependent inhibitory regulation (mediated by Ni), thereby allowing activation by the stimulatory guanine nucleotide-dependent regulatory component (Ns).  相似文献   

7.
Previous histological, electrophysiological, and biochemical reports have addressed the hypothesis that serotonin functions as a neurotransmitter in mammalian retinas. We have tested the effect on the levels of cyclic AMP of the application of exogenous serotonin, 5-methoxytryptamine, melatonin, and 5-methoxydimethyl-tryptamine to isolated, incubated rabbit retinas. All indoleamines tested significantly elevated intracellular levels of cyclic AMP in both light- and dark-adapted, incubated, intact retinas, provided a phosphodiesterase inhibitor was present. In homogenates of rabbit retina, all indoleamines tested also markedly increased adenylate cyclase activity over basal levels. Maximal activity was observed with 50 microM indoleamine; addition of GTP augmented this increase. The increase in enzyme activity persisted in the presence of known antagonists of dopamine and serotonin 5-HT2-receptors, but was blocked by the mixed 5-HT1, 5-HT2-antagonist lysergic acid diethylamide. The retinal locations of this response have also been identified using layer microdissection techniques on freeze-dried samples obtained from rabbit eyecups suprafused with indoleamine plus phosphodiesterase inhibitor. Cyclic AMP levels were measured in discrete retinal layers of both light- and dark-adapted suprafused eyecups, and increased levels were observed primarily in the inner and outer plexiform layers, which contain the synapses of the retinal neurons.  相似文献   

8.
The molecular size of adenylate cyclase solubilized from frog erythrocyte membranes by digitonin extraction has been determined by chromatography on Sepharose 6B. Regardless of whether the membranes are exposed to catecholamines, GPP(NH)P, NaF or no effector prior to solubilization, the apparent molecular size of the adenylate cyclase enzyme is the same. Furthermore, a similar elution profile for the enzyme is observed when the catalytic activity in the eluates is measured in the presence of Mn++, rather than Mg++. Since it is generally assumed that the persistent activation of adenylate cyclase by GPP(NH)P requires interaction of the catalytic moiety with the guanine nucleotide regulatory site, it appears that the adenylate cyclase activity detected in the column eluates represents an intact catalytic-regulatory site complex. The adenylate cyclase activity derived from catecholamine pretreated frog erythrocyte membranes does not co-elute with catecholamine-occupied beta-adrenergic receptors, indicating that the agonist-promoted increase in apparent receptor size observed here and in earlier studies does not represent a physical coupling of the receptor and the adenylate cyclase enzyme.  相似文献   

9.
Summary The distribution of gelsolin, a calcium-dependent actin-severing and capping protein, in the retina of the developing and adult rabbit was studied. Gelsolin immunoreactivity was found in the photoreceptors and ganglion cells, where it may have a role in neuronal morphogenesis. Only the inner segment of the photoreceptors retained a high gelsolin content in the adult retina, perhaps because the attached outer segment is continuously renewed throughout life. Gelsolin, which is a major component of the rabbit brain oligodendrocytes, was also found in the myelin of the medullary ray region of the rabbit retina. Müller cells in all regions of the rabbit retina also contain gelsolin from early in development to adulthood. Since one of the functions of these cells is to ensheath neuronal elements in the inner plexiform and optic fiber layers, we suggest that gelsolin may play the same role in Müller cells as it does in oligodendrocytes, i.e., sheath formation via its calcium-dependent action on the actin microfilament networks.  相似文献   

10.
Adenylate cyclase was found to be present in rod outer segment preparations, but its specific activity was only about 1% of activities reported in earlier studies. In frog activities ranged from 0.015 to 1.1 nmoles 3′,5′ cyclic AMP/mg protein per 10 min depending on the method of preparation and homogenization. In cattle, the rod outer segment layer obtained after sucrose density gradient centrifugation, had an activity of 0.22 nmole 3′,5′ cyclic AMP/mg protein per 10 min. Furthermore a second (more dense) layer obtained in this procedure possessed a 10 times higher specific activity.Light decreased the adenylate cyclase activity in the rod outer segment suspensions of both frog and cattle, but the maximal inhibition was about 50% at extensive illumination. Light did not affect the activity in the second layer, unless rod outer segment layer material was present, indicating that an inhibitory diffusible factor is released from outer segments during illumination. Evidence that either Ca2+ or free all-trans retinaldehyde constitutes this factor could not be obtained.The activities of some marker enzymes in the two layers and in whole retina homogenates from cattle were determined. Comparison of some properties of the adenylate cyclase activities in the two layers and consideration of these enzyme activities do not exclude the possibilty that the activity in the rod outer segment material is due to contamination with other retinal material.The available evidence does not support a direct role for 3′,5′ cyclic AMP in the visual excitation process.  相似文献   

11.
Abstract— Choline acetyltransferase (ChAc) activity was determined in retinal layers from 10 vertebrates. In all animals, the highest activity was in the inner plexiform layer, intermediate activity in the inner nuclear and ganglion cell layers, and very low activity in the photoreceptor and outer plexiform layers and optic nerve. The pattern of distribution of enzyme activity within the inner nuclear layer corresponds quantitatively to the distribution of amacrine cells within that layer. A species difference of almost 90-fold was found between the lowest and highest values for ChAc activity in inner plexiform layer. The variation in enzyme activity found among homeotherms in inner nuclear and inner plexiform layers is related to the number of amacrine cell synapses in the inner plexiform layer. But the differences in enzyme activity are generally greater than those which have been found in numbers of amacrine cell synapses between species. The data suggest that cholinergic neurons in retina are to be found predominantly among the amacrine cell types and that not all amacrine cells will be found to be cholinergic.  相似文献   

12.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Rabbit nephron segments of proximal convoluted tubules (PCT); proximal straight tubules (PST); cortical and medullary thick ascending limbs of Henle's loop (CAL, MAL); and cortical, outer medullary, and inner medullary collecting tubules (CCT, OMCT, IMCT) were individually microdissected and grown in monolayer culture in hormone supplemented, defined media. Factors favoring a rapid onset of proliferation included young donor age, distal tubule origin, and the addition of 3% fetal calf serum to the medium. All primary cultures had polarized morphology with apical microvilli facing the medium and basement membrane-like material adjacent to the dish. Differentiated properties characteristic of the tubular epithelium of origin retained in cultures included ultrastructural characteristics and cytochemically demonstrable marker enzyme proportions. PCT and PST were rich in alkaline phosphatase; CAL stained strongly for NaK-ATPase; CCT contained two cell populations with regard to cytochrome oxidase reaction. A CCT-specific anti-keratin antibody (aLEA) was immunolocalized in CCT cultures, and a PST cytokeratin antibody stained PST cultures. The biochemical response of adenylate cyclase to putative stimulating agents was the same in primary cultures as in freshly isolated tubules. In PCT and PST adenylate cyclase activity was stimulated by parathyroid hormone (PTH) but not by arginine vasopressin (AVP); CAL and MAL adenylate cyclase was stimulated by neither PTH nor AVP; CCT, OMCT, and IMCT adenylate cyclase was stimulated by AVP but not by PTH. NaF stimulated adenylate cyclase activity in every cultured segment. It is concluded that primary cultures of individually microdissected rabbit PCT, PST, CAL, MAL, CCT, OMCT, and IMCT retain differentiated characteristics with regard to ultrastructure, marker enzymes, cytoskeletal proteins, and hormone response of adenylate cyclase and provide a new system for studying normal and abnormal functions of the heterogeneous tubular epithelia in the kidney.  相似文献   

14.
A nucleotide phosphohydrolase-resistant analog of GTP, guanyl-5′-yl imidodiphosphate [GMP-P(NH)P], caused stimulation of basal adenylate cyclase activity of cardiac sarcolemma when ethylene glycol bis(β-aminoethyl ether)- N,N′-tetraacetic acid (EGTA) was absent in the assay mixture, whereas the nucleotide, in the presence of EGTA, inhibited basal cyclase activity. GTP, GDP, GMP, and guanosine failed to show such an inhibition of basal enzyme activity. The degree of both stimulatory and inhibitory effects of GMP-P(NH)P depended on the concentration of magnesium ions. The apparent affinities toward magnesium ions of the metal binding site and toward MgATP2? of the catalytic site of control and ?GMP-P(NH)P-inhibited” enzyme were similar. Isoproterenol reversed the inhibitory effect, whereas calcium ions failed to revert it. Both in the presence and absence of EGTA, GMP-P(NH)P plus isoproterenol caused a synergistic stimulation of the enzyme activity, the degree of stimulation being lower with EGTA present. Exposure of sarcolemma to GMP-P(NH)P (with and without isoproterenol and in the absence and presence of EGTA) caused an activation of adenylate cyclase, the degree of activation being higher with isoproterenol present. The activated enzyme displayed increased affinity toward Mg2+ at the metal binding site. When activated enzyme preparations were assayed in the presence of EGTA, reversal of the activated state was observed in the case of the GMP-P(NH)P-activated enzyme but not in the case of the GMP-P(NH)P + isoproterenol-activated enzyme.  相似文献   

15.
Somatostatin and VIP neurons in the retina of different species   总被引:6,自引:0,他引:6  
Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

16.
The adenylate cyclase activity of human ejaculated spermatozoa in broken-cell preparations was investigated. In the presence of 5 mM metal cations and 0.1 mM ATP, the relative enzyme activity with Mn2+, Ca2+, Mg2+, Ba2+ was 1.00, 0.28, 0.22, and 0.03, respectively. Added Ca2+ appeared to activate the enzyme in the presence of Mn2+ or Mg2+. The human sperm adenylate cyclase was stimulated by ~ 2-fold by free Ca2+ (lmM) in the presence of Mg2+ (5 mM). If the GTP analogue, 5′-guanylyl imidophosphate (Gpp(NH)p) was added to the sperm homogenate in the presence of 200 μM ethylene-glycol-bis (β-aminoethylether) N,N′-tetraacetic acid (EGTA), the adenylate cyclase activity was increased by approximately 25%, but with the addition of 280 μM Ca2+ there was a decrease in enzyme activity. A similar response to low concentrations of Ca2+ was obtained after complementation of the sperm enzyme with the guanine nucleotide regulatory component from human erythrocytes, where the addition of 40 μM Gpp(NH)p, 200 μM EGTA, and Ca2+ (≤ 160 μM) stimulated the sperm enzyme ~ 3–4-fold, but the further addition of Ca2+ (280 μM, final) neutralized the stimulatory effect. The addition of adenosine, and the nucleotides 5′-AMP and 5′-ADP inhibited the enzyme, whereas guanine and 5′-GMP had no appreciable effect. Human follicular fluid and serum also had little direct effect on the sperm adenylate cyclase. These resuls suggest that Ca2+ might be an important physiological modulator of the human sperm adenylate cyclase.  相似文献   

17.
Summary Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

18.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

19.
Evidence is emerging with regard to the role of tissue non-specific alkaline phosphatase (TNAP) in neural functions. As an ectophosphatase, this enzyme might influence neural activity and synaptic transmission in diverse ways. The localization of the enzyme in known neural circuits, such as the retina, might significantly advance an understanding of its role in normal and pathological functioning. However, the presence of TNAP in the retina is scarcely investigated. Our multispecies comparative study (zebrafish, cichlid, frog, chicken, mouse, rat, golden hamster, guinea pig, rabbit, sheep, cat, dog, ferret, squirrel monkey, human) using enzyme histochemistry and Western blots has shown the presence of TNAP activity in the retina of several mammalian species, including humans. Although the TNAP activity pattern varies across species, we have observed the following trends: (1) in all investigated species (except golden hamster), retinal vessels display TNAP activity; (2) TNAP activity consistently occurs in the photoreceptor layer; (3) in majority of the investigated species, marked TNAP activity is present in the outer and inner plexiform layers. In zebrafish, frog, chicken, guinea pig, and rat, TNAP histochemistry has revealed several sublayers of the inner plexiform layer. Frog, golden hamster, guinea pig, mouse, and human retinas possess a subpopulation of amacrine cells positively staining for TNAP activity. The expression of TNAP in critical sites of retinal signal transmission across a wide range of species suggests its fundamental, evolutionally conserved role in vision.  相似文献   

20.
Distribution of proteins providing homeostasis of iron ions in bovine retina was studied by methods of indirect immunohistochemistry, which allowed detection of localization of transferrin, ferritin, and transferrin receptor. In bovine retina, transferrin is revealed in the region of outer and inner segments of photoreceptors and in the external plexiform layer. Distributions of ferritin and transferrin receptor are identical; they are revealed in all layers of retina, the maximal immunoreactivity against these proteins is found in pigment epithelium, in the region of inner segments of photoreceptors, in the external plexiform and internal nuclear layers. The obtained results are discussed from the point of view of mechanisms providing with iron the cells of the outer and inner retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号