首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Cloning of sucrase genes from Streptococcus mutans in bacteriophage lambda   总被引:4,自引:0,他引:4  
Abstract An extracellular peroxidase was purified by chromatofocusing column chromatography from the growth medium of ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium Burds BKM-1767. The enzyme was electrophoretically pure with an M r of 45 000–47 000. It contained an easily dissociable heme, and required Mn2+ ions for activity. In the presence of hydrogen peroxide and Mn2+ it oxidized compounds such as vanillylacetone, 2,6-dimethyloxyphenol, curcumin, syringic acid, guaiacol, syringaldazine, divanillylacetone, and coniferyl alcohol. It did not oxidize veratryl alcohol. In reactions requiring Mn2+ and O2, but not hydrogen peroxide, the enzyme oxidized glutathione, dithiothreitol, and NADPH with production of hydrogen peroxide. The hydrogen peroxide produced could be used as a co-substrate by ligninases such as those that oxidize veratryl alcohol, or by the peroxidase itself to oxidize lignin model compounds.  相似文献   

2.
Isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf et Kernan, and the ectomycorrhizal fungi Suillus variegatus (Swartz ex Fr.) and Pisolithus tinctorius (Pers.) Coker & Couch, along with a Cortinarius sp. and the white rot Phanerochaete chrysosporium Burdsall were examined for the ability to oxidize carbohydrates to their corresponding lactones and to excrete the H2O2 produced thereby. All except Phanerochaete chrysosporium were found to express cellobiose oxidase (cellobiose dehydrogenase, EC 1.1.19.88) and glucose oxidase (β- d -glucose:oxygen 1-oxidoreductase, EC 1.1.3.4) when grown on cellobiose and glucose respectively. Production of extracellular H2O2 was visualized during growth on both substrates using ABTS as the chromogen. According to the Fenton reaction, H2O2 will react with hydrated or chelated Fe(II) in the environment to produce hydroxyl (Fenton) radicals, HO·. Mycelial extracts from each of the mycorrhizal fungi produced HO· in the presence of cellobiose and Fe(II), presumably mediated by H2O2 produced by cellobiose oxidase activity in the extracts. Conditions favourable to HO· production were shown to exist in Modified Melin–Norkrans medium, and the data discussed in relation to previously observed lignin degradation by mycorrhizal fungi.  相似文献   

3.
Aryl alcohols in the physiology of ligninolytic fungi   总被引:7,自引:0,他引:7  
Abstract: White-rot fungi have a versatile machinery of enzymes which work in harmony with secondary aryl alcohol metabolites to degrade the recalcitrant, aromatic biopolymer lignin. This review will focus on the important physiological roles of aryl (veratryl, anisyl and chlorinated anisyl) alcohols in the ligninolytic enzyme system. Their functions include stabilization of lignin peroxidase, charge-transfer reactions and as substrate for oxidases generating extracellular H202. The aryl alcohol/aldehyde couple is well protected against degradation by the fungi's extracellular ligninolytic enzymes and their concentrations in the extracellular fluid are highly regulated by intracellular enzymes.  相似文献   

4.
An extracellular phenolic acid esterase produced by the fungus Penicillium expansum in solid state culture released ferulic and ρ-coumaric acid from methyl esters of theacids, and from the phenolic-carbohydrate esters O-[5-O-(trans-feruloyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose (FAXX) and O-[5-O-((E)-ρ-coumaroyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose(PAXX). The esterase was purified 360-fold in successive stepsinvolving ultrafiltration and column chromatography by gel filtration, anion exchange andhydrophobic interaction. These chromatographic methods separated the phenolic acid esterasefrom α- l -arabinofuranosidase, pectate and pectin lyase, polygalacturonase,xylanase and β- d -xylosidase activities. The phenolic acid esterase had an apparentmass of 65 kDa under non-denaturing conditions and a mass of 57·5 kDa underdenaturing conditions. Optimal pH and temperature were 5·6 and 37 °C,respectively and the metal ions Cu2+ and Fe3+ atconcentrations of 5 mmol l−1 inhibited feruloyl esterase activity by 95% and44%, respectively, at the optimum pH and temperature. The apparent Km and Vmax of the purified feruloyl esterase for methyl ferulate at pH 5·6 and 37 °Cwere 2·6 mmol l−1 and 27·1 μmol min−1 mg−1. The corresponding constants of ρ-coumaroylesterase for methyl coumarate were 2·9 mmol l−1 and 18·6μmol min−1 mg−1.  相似文献   

5.
Abstract: White-rot fungi produce extracellular lignin-modifying enzymes, the best characterized of which are laccase (EC 1.10.3.2), lignin peroxidases (EC 1.11.1.7) and manganese peroxidases (EC 1.11.1.7). Lignin biodegradation studies have been carried out mostly using the white-rot fungus Phanerochaete chrysosporium which produces multiple isoenzymes of lignin peroxidase and manganese peroxidase but does not produce laccase. Many other white-rot fungi produce laccase in addition to lignin and manganese peroxidases and in varying combinations. Based on the enzyme production patterns of an array of white-rot fungi, three categories of fungi are suggested: (i) lignin-manganese peroxidase group (e.g. P. chrysosporium and Phlebia radiata ), (ii) manganese peroxidase-laccase group (e.g. Dichomitus squalens and Rigidoporus lignosus ), and (iii) lignin peroxidase-laccase group (e.g. Phlebia ochraceofulva and Junghuhnia separabilima ). The most efficient lignin degraders, estimated by 14CO2 evolution from 14C-[Ring]-labelled synthetic lignin (DHP), belong to the first group, whereas many of the most selective lignin-degrading fungi belong to the second, although only moderate to good [14C]DHP mineralization is obtained using fungi from this group. The lignin peroxidase-laccase fungi only poorly degrade [14C]DHP.  相似文献   

6.
Abstract The white-rot fungus Junghuhnia separabilima (Pouz.)Ryv, showed high levels of laccase production in cultures supplemented with veratric acid. Laccase, lignin peroxidase and an unknown peroxidase were separated from the extracellular culture fluid using anion-exchange FPLC. Three laccase species, three lignin peroxidases and a novel heme-containing protein were characterized by gel electrophoresis and isoelectric focusing. The new hemoprotein has a molecular mass of 44 kDa, isoelectric point of 3,4 and pH optimum of 5.5 for oxidation of o -dianisidine in the presence of H2O2. However it oxidised diaminobenzidine and guaiacol in the absence of H2O2. Veratryl alcohol and phenol red were not substratesfor this enzyme with or without addition of H2O2 and Mn(II). In addition the enzyme did not produce H2O2.  相似文献   

7.
Abstract The presence of cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylase activity in both microsomal and soluble fractions of the white rot fungus Phanerochaete chrysosporium was shown. The reduced carbon monoxide difference spectrum showed maxima at 448–450 and 452–454 nm for microsomal and cytosolic fractions, respectively. Both P-450 fractions produced a Type I substrate binding spectrum on addition of benzo(a)pyrene. Activity for benzo(a)pyrene hydroxylation was NADPH-dependent and inhibited by carbon monoxide. K m values for activity showed a difference between the cellular fractions with a K m of 89 μM for microsomal P-450 and 400 μM for cytosolic P-450. The V max values observed were 0.83 nmol min (nmol microsomal P-450) −1 and 0.4 nmol min−1 (nmol cytosolic P-450)−1. The results indicate that P-450-mediated benzo(a)pyrene hydroxylase activity could play a role in xenobiotic transformation by this fungus beside the known ligninolytic exocellular enzymes.  相似文献   

8.
The white-rot fungus Bjerkandera sp. BOS55 produced de-novo several aromatic metabolites. Besides veratryl alcohol and veratraldehyde, compounds which are known to be involved in the ligninolytic system of several other white-rot fungi, other metabolites were formed. These included anisaldehyde, 3-chloro-anisaldehyde and a yet unknown compound containing two chlorine atoms. Additionally GC/MS analysis revealed the production of small amounts of anisyl alcohol and 3-chloro-anisyl alcohol. After 14 days, the extracellular fluid of Bjerkandera BOS55 contained 100 microM veratraldehyde and 50 microM 3-chloro-anisaldehyde. This is the first report of de-novo biosynthesis of simple chlorinated aromatic compounds by a white-rot fungus. Anisaldehyde and 3-chloro-anisaldehyde were also produced by Bjerkandera adusta but not by Phanerochaete chrysosporium.  相似文献   

9.
Abstract A lignin-degrading enzyme has been detected in culture supernatants of Phanerochaete chrysosporium strain INA-12 grown under non-limiting nitrogen conditions. Highest levels of enzyme activity were observed when glycerol served as carbon source. Veratryl alcohol, a known secondary metabolite of P. chrysosporium , was also produced in high nitrogen/glycerol cultures of strain INA-12 and closely followed the development of the 'ligninase' activity. Evolution of 14CO2 from 14C-ring-DHP was readily observed when a hydrogen peroxide-generating system was added to 5-day-old high nitrogen/glycerol cultures which contained high amounts of enzyme.  相似文献   

10.
Abstract Pullulan is an industrial biopolymer produced by the yeast-like fungus Aureobasidium , usually by direct fermentation of starch. Despite evidence that autogenous amylases produced during these fermentations are detrimental to the final molecular mass of the product, fundamental studies of these enzymes have not been reported. Total extracellular amylases were studied from the promising production strain NRRL Y-12,974. Growth rates and yields were equivalent in cultures grown on glucose, maltose, soluble starch, or cornstarch. Total amylase levels were low and varied only three-fold, from 0.01 IU ml−1 in glucose-grown cultures to 0.03 IU ml−1 in soluble-starch-grown cultures. All cultures showed both α-amylase activity and activity against pullulan. Synthetic oligosaccharide substrates were apparently attacked by an α-glucosidase, produced in highest levels by maltose-grown cultures.  相似文献   

11.
Abstract The utilization of quinaldine (2-methylquinoline) by Arthrobacter sp. Rü61a proceeds via 1 H -4-oxoquinaldine, 1 H -3-hydroxy-4-oxoquinaldine, and N -acetyl-anthranilic acid. By analogy, 1 H -4-oxoquinoline is degraded by Pseudomonas putida 33/1 via 1 H -3-hydroxy-4-oxoquinoline and N -formylanthranilic acid. Using the purified enzymes from both organisms, the mode of N -heterocyclic ring cleavage was investigated. The conversions of 1 H -3-hydroxy-4-oxoquinaldine and 1 H -3-hydroxy-4-oxoquinoline to N -acetyl- and N -formylanthranilic acid, respectively, were both accompanied by the release of carbon monoxide. The enzyme-catalysed transformations were performed in an [18O]O2 atmosphere and resulted in the incorporation of two oxygen atoms into the respective products, N -acetyl- and N -formylanthranilic acid, indicating an oxygenolytic attack at C-2 and C-4 of both 1 H -3-hydroxy-4-oxoquinaldine and 1 H -3-hydroxy-4-oxoquinolone.  相似文献   

12.
Of 13 Rhizobium and Bradyrhizobium strains investigated for the production of cellular and extracellular phosphodiesterase and phosphotriesterase, all were found to produce both enzymes. Phosphodiesterase was produced at a much higher level than phosphotriesterase. Rhizobium meliloti TAL 1373 was the most productive. The extracellular enzymes were activated by inclusion in the assay mixture of Ca2+ or Mg2+. The enzymes were inhibited by Zn2+ but not significantly affected by Cu2+, Co2+ and Mn2+. Both hydrolases were inhibited by dithiothreitol but not by thiol-directed inhibitors, suggesting that sulphydryl groups are not directly involved in catalysis. The enzymes have the ability to hydrolyse some organophosphorus compounds, suggesting that Rhizobium and Bradyrhizobium strains play an important role in the degradation of organophosphorus pesticides.  相似文献   

13.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   

14.
Abstract Five Clostridium butyricum strains of different origin were grown in trypticase-yeast extract-hemin medium with or without d-glucose (TGYH or TYH medium, respectively) and in a synthetic basal medium with d-glucose (BMG medium). 2-Hydroxy-4-methylpentanoic acid was detected by gas chromatography-mass spectrometry (GC-MS) for the five strains whether grown in TGYH or TYH medium (270 or 170 μM, respectively). In BMG medium supplemented with l-leucine (10 mM), the concentration of this metabolite was strongly increased (2.8 mM versus 10 μM in the control). After culture in TGYH or TYH medium supplemented with l-( methyl -2H3)leucine, 2-hydroxy-4-([2H3]methyl)pentanoic acid was detected by GC-MS. This observation demonstrates that C. butyricum is able to convert l-leucine into the corresponding 2-hydroxy acid and opens a new aspect in the study of C. butyricum metabolism.  相似文献   

15.
Abstract Suspensions of maltose-grown cells of the hyperthermophilic archaeon Pyrococcus furiosus , when incubated at 90°C with 35 mM [1-13C]glucose or [3-13C]glucose, consumed glucose at a rate of about 10 nmol min−1 (mg protein)−1. Acetate (10 mM), alanine (3 mM), CO2 and H2 were the fermentation products. The 13C-labelling pattern in alamine and acetate were analyzed. With [1-13C]glucose the methyl group of both alanine and acetate was labelled; with [3-13C]glucose only the carboxyl group of alanine was labelled whereas acetate was unlabelled. Extracts of maltose-grown cells contained glucose isomerase (12.8 U mg−1, 100°C), ketohexokinase (0.23 U mg−1, 100°C), and fructose 1-phosphate aldolase (0.06 U mg−1, 100°C). Enzymes catalyzing the formation of fructose 1,6-bisphosphate from fructose 1-phosphate or fructose 6-phosphate could not be detected. As publihed previously by our group and other authors P. furiosus also contains enzymes of glyceraldehyde conversion to 2-phosphoglycerate according to a non-phosphorylated Entner-Doudoroff pathway, of dihydroxyacetone phosphate conversion to 2-phosphoglycerate according to the Embden-Meyerhof pathway, and of 2-phosphoglycerate conversion - via pyruvate - to acetate and alanine. Based on the enzyme activities in P. furiosus , the following pathway for glucose degradation to alanine and acetate in cell suspensions is proposed which can explain the [13C]glucose labelling data: glucose→ fructose → fructose 1- phosphate → dihydroxyacetone phosphate + glyceraldehyde and further conversion of both trioses to alanine and acetate via pyruvate.  相似文献   

16.
Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. However, little is known about the effects of plant hormones on the regulation of these pathways. In the present study we investigated the effect of gibberellic acid (GA3) on changes in the amounts of many produced terpenoids and the activity of the key enzymes, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), in these pathways. Our results showed GA3 caused a decrease in DXS activity in both sexes that it was accompanied by a decrease in chlorophylls, carotenoids and Δ9-tetrahydrocannabinol (THC) contents and an increase in α-tocopherol content. The treated plants with GA3 showed an increase in HMGR activity. This increase in HMGR activity was followed by accumulation of stigmasterol and β-sitosterol in male and female plants and campestrol in male plants. The pattern of the changes in the amounts of sterols was exactly similar to the changes in the HMGR activity. These data suggest that GA3 can probably influence the MEP and MVA pathways oppositely, with stimulatory and inhibitory effects on the produced primary terpenoids in MVA and DXS pathways, respectively.  相似文献   

17.
Abstract Extracellular H2O2-dependent ligninase activity of Phanerochaete chrysosporium was produced in agitated culture conditions when veratryl alcohol or veratraldehyde were added to the cultures. The enzyme production was suppressed by cycloheximide indicating that true protein synthesis occurred. The activated cultures were also able to degrade synthetic lignin. Reduction of veratraldehyde to corresponding alcohol during secondary metabolism was a good indicator of the effect of agitation on cell metabolism. Too high agitation speed led to complete inhibition of both the reduction reaction and the ligninolytic activity.  相似文献   

18.
A viscometric assay was used to assess the extracellular pectinolytic enzyme activity produced by Neocallimastix sp. LM1 during growth in a medium containing grass leaves as substrate. The highest activity was measured at pH 8.0, in the presence of CaCl2. This anaerobic fungus apparently produced an endo-acting pectin lyase (EC 4.2.2.10), which was induced in the presence of pectin.  相似文献   

19.
Abstract: We examined the modulation of nitric oxide production in vivo by measuring levels of nitrite (NO2) and nitrate (NO3) in the dialysate of the cerebellum in conscious rats, by using an in vivo brain microdialysis technique. The levels of both NO2 and NO3 were decreased by the intraperitoneal injection of N G-nitro- l -arginine methyl ester, an inhibitor of nitric oxide synthase, whereas N G-nitro- d -arginine methyl ester had no effect. l -Arginine by itself increased NO2 and NO3 levels and diminished the reduction of their levels caused by N G-nitro- l -arginine methyl ester. Direct infusion of l -glutamate, N -methyl- d -aspartate, or KCl into the cerebellum through a dialysis probe resulted in an increase in NO2 and/or NO3 levels. The effects of N -methyl- d -aspartate and KCl were dependent on extracellular calcium. Furthermore, the stimulatory effects of l -glutamate and N -methyl- d -aspartate were inhibited by N G-nitro- l -arginine methyl ester and (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), an N -methyl- d -aspartate receptor antagonist. These results suggest that NO2 and NO3 levels may be related to nitric oxide production in vivo.  相似文献   

20.
Abstract Alkali-tolerant Aspergillus fischeri Fxn1 produced two extracellular xylanases. The major xylanase ( M r 31000) was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange chromatography and preparatory PAGE. Xylose was the major hydrolysis product from oat spelt and birch wood xylans. It was completely free of cellulolytic activities. The optimum pH and temperature were 6.0 and 60 °C, respectively. pH stability ranged from 5 to 9.5 and the t1 / 2 at 50 °C was 490 min. It had a K m of 4.88 mg ml−1and a V max of 588 μmol min−1 mg−1. The activity was inhibited (95%) by AlCl3 (10 mM). This enzyme appears to be novel and will be useful for studies on the mechanism of hydrolysis of xylan by xylanolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号