共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang HY Kuei Y Chao HY Chen SJ Yeh LS Wang CC 《The Journal of biological chemistry》2006,281(42):31430-31439
It was previously shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, codes for two functionally exclusive protein isoforms through alternative initiation at two consecutive ACG codons and an in-frame downstream AUG. We reported here the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae and codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8-codons apart. Unexpectedly, although the short form acts exclusively in cytoplasm, the longer form provides function in both compartments. Similar observations are made in fractionation assays. Thus, the alanyl-tRNA synthetase gene of C. albicans has evolved an unusual pattern of translation initiation and protein partitioning and codes for protein isoforms that can aminoacylate isoaccepting tRNAs from a different species and from across cellular compartments. 相似文献
2.
The sequence of a 228-amino acid nonspecific RNA binding domain appended to the N terminus of a eukaryote tRNA synthetase is shown here to have two lysine-rich clusters (LRCs) that are functionally significant in vivo and in vitro. These two LRCs have unrelated sequences and are separated by a spacer of over 100 amino acids. By using a sensitive test for function in vivo, each LRC is shown to be sufficient in the absence of the other. This sufficiency requires fusion of the spacer to either of the LRCs. Experiments in vitro confirmed that the LRCs are each important for RNA binding. Thus, this nonspecific RNA binding domain has two dissimilar lysine-rich sequence elements that are functionally redundant. Further experiments suggest that this redundancy is not used to dock two molecules of RNA but rather to enhance the overall affinity for a single RNA molecule. 相似文献
3.
Fukunaga R Harada Y Hirao I Yokoyama S 《Biochemical and biophysical research communications》2008,372(3):480-485
An unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa) could expand the genetic alphabet and allow the incorporation of non-standard amino acids into proteins at defined positions. For this purpose, we synthesized tRNAs bearing Pa at the anticodon and tested non-standard amino acid phosphoserine aminoacylation by the wild-type and various engineered phosphoseryl-tRNA synthetases (SepRSs). The D418N D420N T423V triple mutant of SepRS efficiently charged phosphoserine to tRNA containing the PaUA anticodon with a Km = 47.1 μM and a kcat = 0.151 s−1, which are comparable to the values of the wild-type SepRS for its cognate substrate, tRNACys with the GCA anticodon (26.9 μM and 0.111 s−1). The triple mutant SepRS and the tRNA with the PaUA anticodon represent a specific pair for the site-specific incorporation of phosphoserine into proteins in response to the UADs codon within mRNA. 相似文献
4.
tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding
下载免费PDF全文

The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates additional strategies used for specific tRNA selection. The enzyme specifically recognizes the D-loop and the anticodon of the tRNA, and the mutually induced fit produces a conformation of the anticodon loop never seen before. Moreover, the anticodon binding triggers conformational changes in the catalytic center of the protein. The comparison with the 2.9 A structure of a binary complex formed by yeast arginyl-tRNA synthetase and tRNA(Arg) reveals that L-arginine binding controls the correct positioning of the CCA end of the tRNA(Arg). Important structural changes induced by substrate binding are observed in the enzyme. Several key residues of the active site play multiple roles in the catalytic pathway and thus highlight the structural dynamics of the aminoacylation reaction. 相似文献
5.
A 939-amino acid monomeric class I tRNA synthetase has been split into three inactive peptides. The three peptides spontaneously assemble in vivo to reconstitute active protein. Active tripartite complexes were demonstrated in vitro. The tripartite assembly of this synthetase increases by several-fold the size of a polypeptide that has been demonstrated to be assembled from more than two constituent pieces. The results indicate that contemporary single-chain tRNA synthetases or other large proteins could in principle develop from intermediates composed of non-covalent assemblages of multiple peptides. 相似文献
6.
7.
Aminoacyl-tRNA synthetases preserve the fidelity of decoding genetic information by accurately joining amino acids to their cognate transfer RNAs. Here, tRNA discrimination at the level of binding by Escherichia coli histidyl-tRNA synthetase is addressed by filter binding, analytical ultracentrifugation, and iodine footprinting experiments. Competitive filter binding assays show that the presence of an adenylate analogue 5'-O-[N-(L-histidyl)sulfamoyl]adenosine, HSA, decreased the apparent dissociation constant (K(D)) for cognate tRNA(His) by more than 3-fold (from 3.87 to 1.17 microM), and doubled the apparent K(D) for noncognate tRNA(Phe) (from 7.3 to 14.5 microM). By contrast, no binding discrimination against mutant U73 tRNA(His) was observed, even in the presence of HSA. Additional filter binding studies showed tighter binding of both cognate and noncognate tRNAs by G405D mutant HisRS [Yan, W., Augustine, J., and Francklyn, C. (1996) Biochemistry 35, 6559], which possesses a single amino acid change in the C-terminal anticodon binding domain. Discrimination against noncognate tRNA was also observed in sedimentation velocity experiments, which showed that a stable complex was formed with the cognate tRNA(His) but not with noncognate tRNA(Phe). Footprinting experiments on wild-type versus G405D HisRS revealed characteristic alterations in the pattern of protection and enhancement of iodine cleavage at phosphates 5' to tRNA nucleotides in the anticodon and hinge regions. Together, these results suggest that the anticodon and core regions play major roles in the initial binding discrimination between cognate and noncognate tRNAs, whereas acceptor stem nucleotides, particularly at position 73, influence the reaction at steps after binding of tRNA. 相似文献
8.
S G Park K H Jung J S Lee Y J Jo H Motegi S Kim K Shiba 《The Journal of biological chemistry》1999,274(24):16673-16676
Endothelial monocyte activating polypeptide II (EMAPII) is a cytokine that is specifically induced by apoptosis. Its precursor (pro-EMAPII) has been suggested to be identical to p43, which is associated with the multi-tRNA synthetase complex. Herein, we have demonstrated that the N-terminal domain of pro-EMAPII interacts with the N-terminal extension of human cytoplasmic arginyl-tRNA synthetase (RRS) using genetic and immunoprecipitation analyses. Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone. The N-terminal extension of RRS was not required for enzyme activity but did mediate activity stimulation by pro-EMAPII. Pro-EMAPII reduced the apparent Km of RRS to tRNA, whereas the kcat value remained unchanged. Therefore, the precursor of EMAPII is a multi-functional protein that assists aminoacylation in normal cells and releases the functional cytokine upon apoptosis. 相似文献
9.
Aspartyl-tRNA synthetase is a class II tRNA synthetase and occurs in a multisynthetase complex in mammalian cells. Human Asp-tRNA synthetase contains a short 32-residue amino-terminal extension that can control the release of charged tRNA and its direct transfer to elongation factor 1 alpha; however, whether the extension binds to tRNA directly or interacts with the synthetase active site is not known. Full-length human AspRS, but not amino-terminal 32 residue-deleted, fully active AspRS, was found to bind to noncognate tRNA(fMet) in the presence of Mg(2+). Synthetic amino-terminal peptides bound similarly to tRNA(fMet), whereas little or no binding of polynucleotides, poly(dA-dT), or polyphosphate to the peptides was found. The apparent binding constants to tRNA by the peptide increased with increasing concentrations of Mg(2+), suggesting Mg(2+) mediates the binding as a new mode of RNA.peptide interactions. The binding of tRNA(fMet) to amino-terminal peptides was also observed using fluorescence-labeled tRNAs and circular dichroism. These results suggest that a small peptide can bind to tRNA selectively and that evolution of class II tRNA synthetases may involve structural changes of amino-terminal extensions for enhanced selective binding of tRNA. 相似文献
10.
11.
A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon
下载免费PDF全文

Blaise M Becker HD Keith G Cambillau C Lapointe J Giegé R Kern D 《Nucleic acids research》2004,32(9):2768-2775
Escherichia coli encodes YadB, a protein displaying 34% identity with the catalytic core of glutamyl-tRNA synthetase but lacking the anticodon-binding domain. We show that YadB is a tRNA modifying enzyme that evidently glutamylates the queuosine residue, a modified nucleoside at the wobble position of the tRNAAsp QUC anticodon. This conclusion is supported by a variety of biochemical data and by the inability of the enzyme to glutamylate tRNAAsp isolated from an E.coli tRNA-guanosine transglycosylase minus strain deprived of the capacity to exchange guanosine 34 with queuosine. Structural mimicry between the tRNAAsp anticodon stem and the tRNAGlu amino acid acceptor stem in prokaryotes encoding YadB proteins indicates that the function of these tRNA modifying enzymes, which we rename glutamyl-Q tRNAAsp synthetases, is conserved among prokaryotes. 相似文献
12.
13.
14.
15.
Seryl tRNA synthetase from Saccharomyces Carlsbergensis C836 contains two sets of sites for tRNASer, L-serine, and Mg2+-ATP, both of which are involved in aminoacylation. This is based on the following experimental results: (a) at low serine concentrations, second order kinetics in tRNASer are observed; (b) biphasic kinetics result when the amino acid is the varied substrate indicating anticooperative binding of two serine molecules to the synthetase; (c) when two molecules of serine are bound the rate of aminoacylation increases strongly and becomes first order in tRNASer; (d) the involvement of more than one site for Mg2+ and ATP is deduced from systematic variations of the concentrations of Mg2+ and ATP. Implications of the anticooperative binding of the substrates for possible reaction mechanisms are discussed. The results indicate that under normal conditions, the activity of seryl tRNA synthetase is regulated mainly by tRNASer while at high serine concentrations regulation by the amino acid itself prevails. 相似文献
16.
Pyrophosphate-caused inhibition of the aminoacylation of tRNA by the leucyl-tRNA synthetase from Neurospora crassa 总被引:1,自引:0,他引:1
Inorganic pyrophosphate inhibits the aminoacylation of tRNALeu by the leucyl-tRNA synthetase from Neurospora crassa giving very low Kapp.i, PPi values of 3-20 microM. The inhibition by pyrophosphate, together with earlier kinetic data, suggest a reaction mechanism where leucine, ATP and tRNA are bound to the enzyme in almost random order, and pyrophosphate is dissociated before the rate-limiting step. A kinetic analysis of this mechanism shows that the measured Kapp.i values do not give the real dissociation constant but it is about 0.4 mM. Other dissociation constants are 90 microM for leucine, 2.2 mM for ATP and 1 microM for tRNALeu. At the approximate conditions of the living cell (2 mM ATP, 100 microM leucine and 150 microM PPi) the leucyl-tRNA synthetase is about 85% inhibited by pyrophosphate. 相似文献
17.
Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity. 相似文献
18.
19.
Hendrickson TL Nomanbhoy TK de Crécy-Lagard V Fukai S Nureki O Yokoyama S Schimmel P 《Molecular cell》2002,9(2):353-362
Aminoacyl tRNA synthetases (aaRSs) catalyze the first step in protein biosynthesis, establishing a connection between codons and amino acids. To maintain accuracy, aaRSs have evolved a second active site that eliminates noncognate amino acids. Isoleucyl tRNA synthetase edits valine by two tRNA(Ile)-dependent pathways: hydrolysis of valyl adenylate (Val-AMP, pretransfer editing) and hydrolysis of mischarged Val-tRNA(Ile) (posttransfer editing). Not understood is how a single editing site processes two distinct substrates--an adenylate and an aminoacyl tRNA ester. We report here distinct mutations within the center for editing that alter adenylate but not aminoacyl ester hydrolysis, and vice versa. These results are consistent with a molecular model that shows that the single editing active site contains two valyl binding pockets, one specific for each substrate. 相似文献
20.
R K Airas 《European journal of biochemistry》1988,176(2):359-363
The rate of aminoacylation of tRNA catalyzed by the isoleucyl-tRNA synthetase form Escherichia coli has been measured. A steady-state kinetic analysis of the rate as a function of the concentration of ATP gave nonlinear Hanes plots. ATP behaves as an activator of the reaction. The activation is observed at a low magnesium ion concentration and in the presence of spermidine. The presence of inorganic pyrophosphate or AMP enhances the activation. The results are consistent with a mechanism in which the binding of a second molecule of ATP increases the rate of dissociation of Ile-tRNA from the enzyme. 相似文献