首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The small size of the archaebacterial Methanococcus jannaschii tyrosyl-tRNA synthetase may give insights into the historical development of tRNAs and tRNA synthetases. The L-shaped tRNA has two major arms-the acceptor.TpsiC minihelix with the amino acid attachment site and the anticodon-containing arm. The structural organization of the tRNA synthetases parallels that of tRNAs. The more ancient synthetase domain contains the active site and insertions that interact with the minihelix portion of the tRNA. A second, presumably more recent, domain interacts with the anticodon-containing section of tRNA. The small size of the M. jannaschii enzyme is due to the absence of most of the second domain, including a segment thought to bind to the anticodon. Consistent with the absence of an anticodon-binding motif, a mutation of the central base of the anticodon had a relatively small effect on the aminoacylation efficiency of the M. jannaschii enzyme. In contrast, others showed earlier that the same mutation severely reduced charging by a normal-sized bacterial enzyme that has the aforementioned anticodon-binding motif. However, the M. jannaschii enzyme has a peptide insertion into its catalytic domain. This insertion is shared with all other tyrosyl-tRNA synthetases and is needed for a critical minihelix interaction. We show that the M. jannaschii enzyme is active on minihelix substrates over a wide temperature range and has preserved the same peptide-dependent minihelix specificity seen in other tyrosine enzymes. These findings are consistent with the concept that anticodon interactions of tRNA synthetases were later adaptations to the emerging synthetase-tRNA complex that was originally framed around the minihelix.  相似文献   

2.
3.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
G Ghosh  H Y Kim  J P Demaret  S Brunie  L H Schulman 《Biochemistry》1991,30(51):11767-11774
We have previously shown that the anticodon of methionine tRNAs contains the major recognition site required for aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase (MetRS) and have located part of the anticodon binding domain on the enzyme at a site close to Trp461 [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768; Ghosh, G., Pelka, H., & Schulman, L.H. (1990) Biochemistry 29, 2220-2225]. In order to gain information about other possible sites of contact between MetRS and its tRNA substrates, we have examined the effects of mutations at a series of positively charged residues on the surface of the C-terminal domain of the enzyme. Conversion of Arg356, Arg366, Arg380, or Arg453 to Gln had little or no effect on enzyme activity. Similarly, conversion of Lys402 or Lys439 to Asn failed to significantly alter aminoacylation activity. Conversion of Arg380 to Ala or Arg442 to Gln produced a 5-fold reduction in kcat/Km for aminoacylation of tRNAfMet, with no effect on methionine activation, indicating a possible minor role for these residues in interaction of the enzyme with the tRNA substrate. In contrast, mutation of a phylogenetically conserved residue, Arg395, to Gln increased the Km for aminoacylation of tRNAfMet about 30-fold and reduced kcat/Km by 25,000-fold. The mutant enzyme was also shown to be highly defective by its inability to complement a strain of E. coli having an altered chromosomal MetRS gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In this work, we probe the role of the anticodon in tRNA recognition by human lysyl-tRNA synthetase (hLysRS). Large decreases in aminoacylation efficiency are observed upon mutagenesis of anticodon positions U35 and U36 of human tRNA(Lys,3). A minihelix derived from the acceptor-TPsiC stem-loop domain of human tRNA(Lys,3)was not specifically aminoacylated by the human enzyme. The presence of an anticodon-derived stem-loop failed to stimulate aminoacylation of the minihelix. Thus, covalent continuity between the acceptor stem and anticodon domains appears to be an important requirement for efficient charging by hLysRS. To further examine the mechanism of communication between the critical anticodon recognition elements and the catalytic site, a two piece semi-synthetic tRNA(Lys, 3)construct was used. The wild-type semi-synthetic tRNA contained a break in the phosphodiester backbone in the D loop and was an efficient substrate for hLysRS. In contrast, a truncated variant that lacked nucleotides 8-17 in the D stem-loop displayedseverely reduced catalytic efficiency. The elimination of key tRNA tertiary structural elements has little effect on anticodon-dependent substrate binding but severely impacts formation of the proper transition state for catalysis. Taken together, our studies provide new insights into human tRNA structural requirements for effective transmission of the anticodon recognition signal to the distal acceptor stem domain.  相似文献   

7.
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs. Specific aminoacylation is dictated by a set of recognition elements that mark tRNA molecules as substrates for particular synthetases. Escherichia coli prolyl-tRNA synthetase (ProRS) has previously been shown to recognize specific bases of tRNA(Pro) in both the anticodon domain, which mediate initial complex formation, and in the acceptor stem, which is proximal to the site of catalysis. In this work, we unambiguously define the molecular interaction between E. coli ProRS and the acceptor stem of cognate tRNA(Pro). Oxidative cross-linking studies using 2'-deoxy-8-oxo-7,8-dihydroguanosine-containing proline tRNAs identify a direct interaction between a critical arginine residue (R144) in the active site of E. coli ProRS and the G72 residue in the acceptor stem of tRNA(Pro). Assays conducted with motif 2 loop variants and tRNA mutants wherein specific atomic groups of G72 were deleted, are consistent with a functionally important hydrogen-bonding network between R144 and the major groove of G72. These results taken together with previous studies suggest that breaking this key contact uncouples the allosteric interaction between the anticodon domain and the aminoacylation active site, providing new insights into the communication network that governs the synthetase-tRNA interaction.  相似文献   

8.
Zhang CM  Hou YM 《Biochemistry》2005,44(19):7240-7249
Aminoacyl-tRNA synthetases form complexes with tRNA to catalyze transfer of activated amino acids to the 3' end of tRNA. The tRNA synthetase complexes are roughly divided into the activation and tRNA-binding domains of synthetases, which interact with the acceptor and anticodon ends of tRNAs, respectively. Efficient aminoacylation of tRNA by Escherichia coli cysteinyl-tRNA synthetase (CysRS) requires both domains, although the pathways for the long-range domain-domain communication are not well understood. Previous studies show that dissection of tRNA(Cys) into acceptor and anticodon helices seriously reduces the efficiency of aminoacylation, suggesting that communication requires covalent continuity of the tRNA backbone. Here we tested if communication requires the continuity of the synthetase backbone. Two N-terminal fragments and one C-terminal fragment of E. coli CysRS were generated. While the N-terminal fragments were active in adenylate synthesis, they were severely defective in the catalytic efficiency and specificity of tRNA aminoacylation. Conversely, although the C-terminal fragment was not catalytically active, it was able to bind and discriminate tRNA. However, addition of the C-terminal fragment to an N-terminal fragment in trans did not improve the aminoacylation efficiency of the N-terminal fragment to the level of the full-length enzyme. These results emphasize the importance of covalent continuity of both CysRS and tRNA(Cys) for efficient tRNA aminoacylation, and highlight the energetic costs of constraining the tRNA synthetase complex for domain-domain communication. Importantly, this study also provides new insights into the existence of several natural "split" synthetases that are now identified from genomic sequencing projects.  相似文献   

9.
Alexander RW  Schimmel P 《Biochemistry》1999,38(49):16359-16365
We report here evidence for mutations that break domain-domain functional communication in a synthetase-tRNA complex. Each synthetase is roughly divided into two major domains that are paralleled by the two arms of the L-shaped tRNA structure. The active-site-containing domain interacts with the acceptor arm of the tRNA. The second domain frequently interacts with the anticodon-containing arm. By an induced-fit mechanism, contacts with the anticodon can activate formation of a robust transition state at a site over 70 A away. This induced-fit-based activation is thought to occur through domain-domain signaling and is seen by the enhancement of aminoacylation of the anticodon-containing full tRNA versus a substrate based on the acceptor arm alone. Here we describe a rationally designed mutant methionyl-tRNA synthetase containing two point substitutions at sites that potentially link an anticodon-binding motif to the catalytic domain. The double mutation had no effect on interactions with either the isolated acceptor arm or the anticodon stem-loop. In contrast to interactions with the separate pieces, the mutant enzyme was severely impaired for binding the native tRNA and lost much of its ability to enhance the rate of charging of the full tRNA over that of a substrate based on the acceptor arm alone. We propose that these residues are part of a network for facilitating domain-domain communication for formation of an active synthetase-tRNA complex by induced fit.  相似文献   

10.
Initiation of in vivo protein synthesis with non-methionine amino acids   总被引:8,自引:0,他引:8  
Methionine is the universal amino acid for initiation of protein synthesis in all known organisms. The amino acid is coupled to a specific initiator methionine tRNA by methionyl-tRNA synthetase. In Escherichia coli, attachment of methionine to the initiator tRNA (tRNA(fMet)) has been shown to be dependent on synthetase recognition of the methionine anticodon CAU (complementary to the initiation codon AUG), [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759]. We show here that alteration of the anticodon of tRNA(fMet) to GAC or GAA leads to aminoacylation of the initiator tRNA with valine or phenylalanine. In addition, tRNA(fMet) carrying these amino acids initiates in vivo protein synthesis when provided with initiation codons complementary to the modified anticodons. These results indicate that the sequence of the anticodon of tRNA(fMet) dictates the identity of the amino acid attached to the initiator tRNA in vivo and that there are no subsequent steps which prevent initiation of E. coli protein synthesis by valine and phenylalanine. The methods described here also provide a convenient in vivo assay for further examination of the role of the anticodon in tRNA amino acid acceptor identity.  相似文献   

11.
Vu MT  Martinis SA 《Biochemistry》2007,46(17):5170-5176
Leucyl-tRNA synthetase (LeuRS) is a class I enzyme, which houses its aminoacylation active site in a canonical core that is defined by a Rossmann nucleotide binding fold. In addition, many LeuRSs bear a unique polypeptide insert comprised of about 50 amino acids located just upstream of the conserved KMSKS sequence. The role of this leucine-specific domain (LS-domain) remains undefined. We hypothesized that this domain may be important for substrate recognition in aminoacylation and/or amino acid editing. We carried out a series of deletion mutations and chimeric swaps within the leucine-specific domain of Escherichia coli. Our results support that the leucine-specific domain is critical for aminoacylation but not required for editing activity. Kinetic analysis determined that deletion of the LS-domain primarily impacts kcat. Because of its proximity to the aminoacylation active site, we propose that this domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation. Although the leucine-specific domain does not appear to be important to the editing complex, it remains possible that it aids the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex.  相似文献   

12.
E. coli threonyl-tRNA synthetase (ThrRS) is a class II enzyme that represses the translation of its own mRNA. We report the crystal structure at 2.9 A resolution of the complex between tRNA(Thr) and ThrRS, whose structural features reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel protein fold that makes minor groove contacts with the tRNA acceptor stem. The enzyme induces a large deformation of the anticodon loop, resulting in an interaction between two adjacent anticodon bases, which accounts for their prominent role in tRNA identity and translational regulation. A zinc ion found in the active site is implicated in amino acid recognition/discrimination.  相似文献   

13.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

14.
15.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNAGln was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNAGln charging. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.  相似文献   

16.
Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.  相似文献   

17.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

18.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

19.
N Y Sardesai  R Green  P Schimmel 《Biochemistry》1999,38(37):12080-12088
RNA minihelices that recreate the amino acid acceptor domain of the two-domain L-shaped tRNA molecule are substrates for specific aminoacylation by tRNA synthetases. Some lines of evidence suggest that this domain arose independently of and predated the second, anticodon-containing domain. With puromycin and a minihelix charged with alanine, we show here efficient 50S ribosome catalyzed peptide synthesis. The aminoacyl minihelix is as active as aminoacyl tRNA in the synthetic reaction. The high efficiency of the charged minihelix is due to a relatively strong interaction with the 50S particle. In contrast, an aminoacyl RNA fragment that recreates the 3'-side of the tRNA acceptor stem has a much weaker interaction with the 50S particle. These results are consistent with the minihelix domain being the major loci for tRNA interactions with the 50S ribosome. They may also have implications for the historical development of RNA-based systems of peptide synthesis.  相似文献   

20.
Aminoacyl-tRNA synthetases ensure the fidelity of protein synthesis by accurately selecting and activating cognate amino acids for aminoacylation of the correct tRNA. Some tRNA synthetases have evolved an editing active site that is separate from the amino acid activation site providing two steps or "sieves" for amino acid selection. These two sieves rely on different strategies for amino acid recognition to significantly enhance the accuracy of aminoacylation. We have performed alanine scanning mutagenesis in a conserved threonine-rich region of the Escherichia coli leucyl-tRNA synthetase's CP1 domain that is hypothesized to contain a putative editing active site. Characterization of purified mutant proteins led to the identification of a single conserved threonine that prevents the cognate leucine amino acid from being hydrolyzed after aminoacylation of the tRNA. Mutation of this threonine to an alanine eliminates discrimination of the cognate amino acid in the editing active site. This provides a molecular example of an amino acid discrimination mechanism in the tRNA synthetase's editing active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号