首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
The investigation aimed at examining if the composition of grassland silage affects the microbial nitrogen assimilation in the rumen of sheep. The silages were made of vegetative summer re-growths consisting of 48% grasses, 28% legumes and 24% other forbs (GCF) or of pure grass (G). Silage GCF contained more intermediately degradable non-structural and less slowly degradable carbohydrates, more crude protein (CP), a narrower ratio between slow and very slow degradable nitrogen (N), and exhibited higher in situ degradability of organic matter and CP than Silage G. Four adult wethers equipped with rumen fistulae were used in a two factorial trial. Feed was offered either as silage alone or as a mixture of silage and barley (60:40). Microbial N was estimated using continuous intraruminal 15N infusion and measurement of 15N-enrichment in microbes isolated from rumen liquor samples. With the exception of trends for ruminal butyrate concentrations, no interactions were detected between silage and barley feeding. Sheep receiving Silage GCF exhibited larger diurnal fluctuations of ammonia, and produced more microbial N (p < 0.05) than sheep on Silage G. Feeding the silages with barley decreased ruminal pH and elevated the concentrations of butyrate (p < 0.05). The 15N incorporation into microbial N was reduced by barley feeding (p < 0.05) along with a trend to accelerated rumen fluid turnover, resulting in similar microbial N yields as found in sheep receiving silage without barley. It is concluded that the larger and better balanced amounts of intermediately degradable carbohydrate- and N-containing fractions favoured the ruminal microbial protein synthesis in sheep consuming Silage GCF instead of Silage G.  相似文献   

2.
As short chain fatty acids produced in the forestomach are insufficient to satisfy the energy requirements of the concentrate selecting roe deer (Capreolus capreolus), it is proposed that these animals may have other mechanisms to avoid energy losses due to microbial fermentation. Nutrients bypassing down the ventricular groove (rumen bypass) or ruminal escape of unfermented or partially fermented nutrients may be two alternatives. As metabolic evidence for incomplete fermentation in the forestomach we investigated: (1) the abundance of the sodium-dependent glucose co-transporter (SGLT1) in the duodenum; (2) enzyme activities of maltase, saccharase and alpha-amylase in duodenal and pancreatic tissue; and (3) the proportion of essential, polyunsaturated fatty acids in depot fat samples from ruminants of different feeding type and--for comparison--from animals with a simple stomach. The high abundance of SGLT1, high enzyme activity and the high proportion of polyunsaturated fatty acids in the concentrate selecting ruminants support the hypothesis of rumen bypass or ruminal escape of nutrients in roe deer and reflect differences in nutrient utilization by ruminants that belong to different feeding types.  相似文献   

3.
Effects of plant maturity on apparent ruminal synthesis and post-ruminal supply of B vitamins were evaluated in two feeding trials. Diets containing alfalfa (Trial 1) or orchardgrass (Trial 2) silages harvested either (1) early cut, less mature (EC) or (2) late cut, more mature (LC) as the sole forage were offered to ruminally and duodenally cannulated lactating Holstein cows in crossover design experiments. In Trial 1, conducted with 16 cows (569±43 kg of empty BW (ruminal content removed) and 43.7±8.6 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 17-day treatment periods, both diets provided ~22% forage NDF and 27% total NDF, and the forage-to-concentrate ratios were 53 : 47 and 42 : 58 for EC and LC, respectively. In Trial 2, conducted with 13 cows (588±55 kg of empty BW and 43.7±7.7 kg/day of 3.5% fat-corrected milk yield; mean±SD) in two 18-day treatment periods, both diets provided ~25% forage NDF and 31% total NDF; the forage-to-concentrate ratios were 58 : 42 and 46 : 54 for EC and LC, respectively. Thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were measured in feed and duodenal content. Apparent ruminal synthesis was calculated as the duodenal flow minus the intake. Diets based on EC alfalfa decreased the amounts of thiamin, niacin and folates reaching the duodenum, whereas diets based on EC orchardgrass increased riboflavin duodenal flow. Daily apparent ruminal synthesis of thiamin, riboflavin, niacin and vitamin B6 were correlated negatively with their intake, suggesting a microbial regulation of their concentration in the rumen. Vitamin B12 apparent ruminal synthesis was correlated negatively with total volatile fatty acids concentration, but positively with ruminal pH and microbial N duodenal flow.  相似文献   

4.
Despite their major contribution to the energy supply of ruminants, the production of volatile fatty acids (VFA) in the rumen is still poorly predicted by rumen models. We have developed an empirical approach, based on the interpretation of large bibliographic databases gathering published in vivo measurements of ruminal VFA production rate (PR), rates of duodenal and faecal digestion and molar percentages of VFA in the rumen. These databases, covering a wide range of intake levels and dietary composition, were studied by meta-analysis using within-experiment models. We established models to quantify response laws of total VFA-PR and individual VFA molar percentages in the rumen to variations in intake level and dietary composition. The rumen fermentable organic matter (RfOM) intake, estimated from detailed knowledge of the chemical composition of diets according to INRA Feed Tables, appears as an accurate explanatory variable of measured total VFA-PR, with an average increment of 8.03 ± 0.64 mol total VFA/kg RfOM intake. Similar results were obtained when total VFA-PR was estimated from measured apparent RfOM (total VFA-PR/RfOM averaging 8.3 ± 1.2 mol/kg). The VFA molar percentages were related to dry matter intake and measured digestible organic matter (OM), digestible NDF and rumen starch digestibility, with root mean square error of 1.23, 1.45, 0.88 and 0.41 mol/100 mol total VFA for acetate, propionate, butyrate and minor VFA, respectively, with no effect of pH on the residuals. Stoichiometry coefficients were calculated from the slopes of the relationships between individual VFA production (estimated from measured apparent RfOM and individual VFA molar percentages) and measured fermented fractions. Coefficients averaged, respectively, 66, 17, 14 and 3 mol/100 mol for NDF; 41, 44, 12 and 4 mol/100 mol for starch; and 46, 35, 13 and 6 mol/100 mol for crude protein. Their use to predict VFA molar percentages appear relevant for most dietary conditions, that is, when the digested NDF/digested OM ratio exceeded 0.12. This study provides a quantitative review on VFA yield in the rumen. It contributes to the development of feed evaluation systems based on nutrient fluxes.  相似文献   

5.
The objective of this study was to evaluate the effects of isobutyrate supplementations on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Eight ruminally cannulated Simmental steers were used in a replicated 4 x 4 Latin square experiment. On DM basis, diet consisted of 60% corn stover and 40% concentrate. Dry matter intake (averaged 9 kg/d) was restricted to 90% of ad libitum intake. The four treatment groups received a daily dose of 0 (control), 8.4, 16.8 or 25.2 g isobutyrate per steer. With increasing isobutyrate supplementation total VFA concentration (range 64.2-74.0 mM) was significantly enhanced. The ratio of acetate to propionate (range 2.72-4.25) was also significantly increased due to the increase in actate production and decrease in propionate production. With increasing isobutyrate supplementation the ruminal degradation of NDF from corn stover was improved but the CP degradability of soybean meal was decreased. Furthermore, the isobutyrate supplementation caused a significantly increased urinary excretion of purine derivatives. Similarly, digestibilities of OM, NDF and CP in the total tract were significantly increased. The present results indicate that dietary supplementation with isobutyrate improved rumen fermentation and feed digestion in beef cattle in a dose-dependent manner. According to the conditions of this experiment, the optimum daily dose of isobutyrate was about 16.8 g/animal.  相似文献   

6.
In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P<0.05) in steers receiving rumen infusion of casein. SAD and the microbial protein concentration did not vary significantly among treatments during the feeding cycle, but mean SAD values were greater in steers supplemented in the rumen and rumen/abomasum. Ruminal ammonia concentration was positively correlated with SAD in animals receiving ruminal infusion of casein. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed low similarity between treatments, animals and time of sample collection. Richness analysis and determination of the Shannon–Wiener index indicated no differences (P>0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon–Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.  相似文献   

7.
The objective of this study was to evaluate the effects of isobutyrate supplementations on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Eight ruminally cannulated Simmental steers were used in a replicated 4 × 4 Latin square experiment. On DM basis, diet consisted of 60% corn stover and 40% concentrate. Dry matter intake (averaged 9 kg/d) was restricted to 90% of ad libitum intake. The four treatment groups received a daily dose of 0 (control), 8.4, 16.8 or 25.2 g isobutyrate per steer. With increasing isobutyrate supplementation total VFA concentration (range 64.2–74.0 mM) was significantly enhanced. The ratio of acetate to propionate (range 2.72–4.25) was also significantly increased due to the increase in actate production and decrease in propionate production. With increasing isobutyrate supplementation the ruminal degradation of NDF from corn stover was improved but the CP degradability of soybean meal was decreased. Furthermore, the isobutyrate supplementation caused a significantly increased urinary excretion of purine derivatives. Similarly, digestibilities of OM, NDF and CP in the total tract were significantly increased. The present results indicate that dietary supplementation with isobutyrate improved rumen fermentation and feed digestion in beef cattle in a dose-dependent manner. According to the conditions of this experiment, the optimum daily dose of isobutyrate was about 16.8 g/animal.  相似文献   

8.
Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were similar in both types of fermenters. Mean values of pH over the 12 h postfeeding were higher (P < 0.001) in Rusitec than in SFCCF, with diet F80 showing higher values (P < 0.001) in both types of fermenters. Concentrations of total volatile fatty acids (VFA) were higher (P < 0.001) in SFCCF than in Rusitec, and in both systems were higher (P = 0.002) for diet F20 than for diet F80. There were significant differences between systems in the proportions of the main VFA, and a fermentation system × diet interaction (P < 0.001) was detected for all VFA with the exception of valerate. No differences (P = 0.145) between the two types of fermenters were detected in dry matter (DM) digestibility, but NDF, microbial N flow and its efficiency were higher (P = 0.001) in SFCCF compared to Rusitec. Whereas pH values and VFA concentrations remained fairly stable through the day in both in vitro systems, pH dropped and VFA increased shortly after feeding in sheep rumen reaching the minimum and maximal values, respectively, about 4 h after feeding. Both in vitro systems detected differences between diets similar to those found in sheep for liquid dilution rate, pH values, DM digestibility, microbial N flow and growth efficiency. In contrast, acetate/propionate ratios were lower for diet F20 than for F80 in sheep rumen (2.73 and 3.97) and SFCCF (3.07 and 4.80), but were higher for diet F20 compared to F80 (4.29 and 3.40) in Rusitec, with values considered to be unphysiological for high-concentrate diets. In vivo NDF digestibility was affected (P = 0.017) by diet, but no differences between diets (P > 0.05) were found in any in vitro system. A more precise control of pH in both types of fermenters and a reduction of concentrate retention time in Rusitec could probably improve the simulation of in vivo fermentation.  相似文献   

9.
ABSTRACT

The effects of treating sunflower seed (SS) and meal (SM), as well as of a mixture of both feeds (SSM; 45:55) with a solution of malic acid (1 M; 400 ml/kg feed) and heating for protection against ruminal degradation were studied. Four rumen-fistulated sheep were fed two mixed diets composed of oat hay and concentrate (40:60) and differing only in the concentrate, that contained either a mixture of untreated SS and SM (control diet) or treated SS and SM (MAH diet). A crossover design with two 24-d experimental periods was used, and each period included 10 d of diet adaptation, 9 d for in situ incubations of SS, SM and SSM, and 5 d for measuring ruminal fermentation characteristics and rumen emptying. From day 6 onwards a solution of (15NH4)2SO4 was continuously infused into the rumen of each sheep to label ruminal bacteria. Feeding the MAH diet did not affect either ruminal pH or concentrations of total volatile fatty acids and NH3-N, but decreased (p ≤ 0.01) the molar proportions of acetate and propionate and increased those of butyrate (p< 0.001). Organic matter and lipid contents of ruminal bacteria were lower whereas both N content and 15N enrichment were greater (p ≤ 0.05) in MAH-fed sheep. The in situ effective degradability (ED) of different fractions of SS, SM and SSM were calculated from the ruminal rates of particle comminution and passage, and values were corrected for microbial contamination. The MAH treatment decreased the ED of most fractions for all feeds and increased the supply of by-pass crude protein (CP) by 19.1% and 120% for SS and SM, respectively, and that of fat by 34% for SS. The MAH treatment also increased the in vitro intestinal digestibility of the by-pass CP for both SS (from 60.1% to 75.4%) and SM (from 83.2% to 91.0%). The simultaneous heating of both feeds (SSM) reinforced the protective effect of the MAH treatment and increased the by-pass CP without altering its intestinal digestibility, increasing the intestinally digested CP content by 16.8% compared with the value estimated from the results obtained for MAH-treated SS and SM incubated independently. These results indicate that the MAH treatment was effective to protect sunflower protein against rumen degradation and increased its intestinal digestibility.  相似文献   

10.
Aims: To investigate, using culture‐independent methods, whether the ruminal bacterial structure, population and fermentation parameters differed between sampling locations and time. Methods and Results: The detectable bacteria and fermentation parameters in the digesta from five locations in the rumen of three cows at three time points were analysed. The PCR‐denaturing gradient gel electrophoresis (PCR‐DGGE) profiles were similar among digesta samples from five locations (95·4%) and three time points (93·4%) within cows; however, a lower similarity was observed for samples collected from different host animals (85·5%). Rumen pH and concentration of volatile fatty acids (VFA) were affected by time points of sampling relative to feeding. Conclusions: The detectable bacterial structure in the rumen is highly conserved among different locations and over time, while the quantity of individual bacterial species may change diurnally in response to the feeding. Significance and impact of the study: This study supplies the fundamental understanding of the microbial ecology in the rumen, which is essential for manipulation of ruminal microflora and subsequent improvement in animal production.  相似文献   

11.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520 kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10 cm (top) and 25-35 cm beneath the top of the particle mat (middle) and 5-10 cm above the rumen floor (bottom). For a main plot treatment (H x C), repeated samples were collected at four time intervals (1 h before and 2, 5 and 10 h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P < 0.05); pH and bicarbonate concentration increased (P < 0.05), while DM, NDF, ADF and ADL contents in SM, MPL and SG did not differ. Higher NDF content of hay (from 47-62%) increased SM, fibre fractions in SM, MPL, pH and concentration of bicarbonate in ruminal digesta, especially when 50% concentrate was given, while SG decreased. When the concentrate level was enhanced from 20 to 50%, digesta SM, MPL and the content of DM and NDF in SRF increased, while pH, concentrations of SCFA and acetate decreased when low-fibre hay was given. With longer time after feeding the digesta SM was reduced and fibre content in SM increased. The increase of the fibre content of hay reduced the possible negative effect of high concentrate level on the stratification of ruminal digesta. The decrease of the fibre content of hay promised better conditions for fibre digestion in the rumen when concentrate availability is limited.  相似文献   

12.
In situ estimates of ruminal undegraded fraction (RU) and effective intestinal digestibility (EID, corrected for microbial colonisation) of dry matter (DM), crude protein (CP) and total analysed amino acids (TAA) of rye, wheat and corn grains, wheat bran, wheat and barley distillers’ dried grains with solubles (DDGS) and corn gluten feed were measured on three rumen and duodenum cannulated wethers using 15N labelling techniques and considering ruminal rates of particle comminution (kc) and outflow. Results indicate that not considering kc and microbial colonisation led to considerable overestimations of RU which increased with feed ruminal degradation. Microbial colonisation may be also associated with overestimations of EID, whose estimates for DM, CP and TAA were predicted from parameters related with the ruminal escape of intestinally indigestible materials. The RU estimates were higher for TAA than for CP in grains, but the opposite was observed in by-products, whereas EID estimates were higher for TAA in all feeds. To obtain accurate protein values in these feedstuffs, it is required to consider both kc and ruminal microbial colonisation. The CP-based results underestimate the intestinally digested protein in grains and the opposite is evidenced in cereal by-products. Microbial protein synthesised in the rumen is largely the major fraction of the feedstuff protein value with the exception of DDGS.  相似文献   

13.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520?kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10?cm (top) and 25?–?35?cm beneath the top of the particle mat (middle) and 5?–?10?cm above the rumen floor (bottom). For a main plot treatment (H·C), repeated samples were collected at four time intervals (1?h before and 2, 5 and 10?h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P?P?相似文献   

14.
The present study aimed at determining the influence of condensed tannins present in the Brazilian legume species Mimosa hostilis, Mimosa caesalpinifolia and Bauhinia cheilantha on ruminal degradability, microbial colonization and enzymatic activity. Polyethylene glycol (PEG) was used to reduce the astringency and concentration of soluble condensed tannins. Four ruminally-cannulated Saanen goats (60 ± 8 kg BW) were fed, in two experimental periods, with a hay diet based on the studied legumes treated or non-treated with PEG. Voluntary intake, microbial colonization, DM, CP, NDF, and ruminal degradability of PEG treated and non-treated forage leaves, as well as pH, ammonia and 1,4 β-endoglucanase activity of the rumen content were evaluated. Astringency and soluble tannin concentration of the studied legumes were reduced by approximately 70% and 50%, respectively, with PEG treatment. Average DM intake was higher for the treated diet (16.76 g DM/kg BW/day against 13.06 g DM/kg BW/day). Percentile values for degradation parameters and for potential and effective degradabilities of DM, CP and NDF were also affected by the tannins, but at different intensities. Electron microscopic observations of ruminally-incubated legume leaves showed a more effective microbial colonization of PEG-treated leaves for all legume species. A decrease in pH and an increase in ammonia concentration and in endoglucanase activity in the ruminal content was also observed for PEG-treated diets at all sampling periods. Condensed tannins of the studied legume species have influenced the adhesion conditions, colonization and enzymatic activity of the microbial ecosystem, and consequently the ruminal degradation of the different dietary fractions. For this reason, the reduction in condensed tannin would be of great importance to improve the nutrition of ruminant feeding of these species.  相似文献   

15.
Eight multiparous periparturient Holstein cows fitted with ruminal cannulas were used in a split plot design to evaluate effects of monensin on ruminal volatile fatty acid (VFA) metabolism. Diets were supplemented with 300 mg/day of monensin, or no monensin, both prepartum and postpartum. Isotopic tracers, Na-1-13C-acetate (Ac), Na-1-13C-propionate (Pr), or Na-1-13C-butyrate (Bu) were used as markers to describe VFA kinetics in the rumen. The Windows version of SAAM software (WinSAAM) was used to develop a steady state VFA model. A 9-compartment model was adequate to comprehensively describe ruminal VFA metabolism. The main VFA compartments consisted of Ac, Pr and Bu. The model estimated lower Bu and Ac interconversions with monensin, postpartum (Bu to Ac; 0.14 versus 0.12; P=0.04, and Ac to Bu; 0.32 versus 0.25; P=0.11) compared to when measured prepartum. Results demonstrate that dilution studies employing stable isotopes of VFA can be used to provide information on VFA metabolism of the periparturient dairy cow. A time frame of 320 min of labeled VFA infusion employing a single injection allows accurate quantification of VFA metabolism in the rumen. Compartmental kinetic analysis of major VFA in the rumen indicate that monensin reduced about 0.125 the portion of the Ac that contributes to Bu by reducing movements of Bu originated carbons to the Ac pool. Monensin may affect certain biochemical pathways of interconversion of Bu and Ac in the rumen. Propionate kinetic data suggests that Pr behaves as a single pool in the rumen. Monensin did not affect Pr production in the rumen suggesting that monensin improves the metabolic status of the transition cow in a way other than increasing Pr production in the rumen.  相似文献   

16.
Single concentrate feeds are mixed together forming compound feeds for cattle. However, knowledge regarding the potential interactions (associative effects) between the feeding values of single feeds in compound feeds is lacking. The main objective of the present study was to evaluate ruminal fermentation characteristics and feeding values of eight industrially produced compound feeds in mash form from their constituent single feeds for dairy cows through in vitroassays. Additivity was given for gas production (GP), digestibility of organic matter (dOM) and utilisable CP at the duodenum (uCP). Additivity of CP fractions (determined using the Cornell Net Carbohydrate and Protein System (CNCPS)) was dependent on the fraction and compound feed type; however, the effective degradation calculated from CP fractions (EDCNCPS) showed additivity. Additivity was not given for intestinal digestibility of rumen-undegraded protein (IDRUP) for five out of eight compound feeds. Precise calculation of metabolisable energy (ME) of compound feeds from ME of single feeds was possible when using the same ME equations for all single and compound feeds. Compound feeds are often provided in pellet form; therefore, our second objective was to evaluate the effects of pelleting on ruminal fermentation characteristics and feeding values of compound feeds. Pelleting affected GP at 24 h (GP24; up to 2.4 ml/200 mg DM), dOM (up to 2.3 percentage point (pp)) and ME (up to 0.3 MJ/kg DM), but these differences were overall small. More considerable effects of pelleting were observed for uCP, which was increased in all compound feeds except the two with the highest CP concentrations. The IDRUPwas lower in most compound feeds following pelleting (up to 15 pp). Pelleting also affected CP fractions in a non-systematic way. Overall, the effects of pelleting were not considerable, which could be because pelleting conditions were mild. Our third objective was to compare in situruminal CP degradation (EDIN_SITU) of compound feeds with ED using two prediction methods based on CP fractions. EDIN_SITUreference data were obtained from a companion study using the same feeds. Prediction accuracy of EDIN_SITUand EDCNCPSwas variable and depended on the compound feed and prediction method. However, future studies are needed as to date not enough data are published to draw overall conclusions for the prediction of EDIN_SITUfrom CP fractions.  相似文献   

17.
A mathematical model of rumen fermentation processes was validated with 65 sheep experiments and 45 cattle experiments, respectively. Further, it was shown how the modell reacts when the feed composition, the level of feed intake and the feeding frequency was changed. The model predictions were satisfactory for the digestibility of organic matter and neutral detergent fibre (NDF) in rumen, the production of volatile fatty acids and the non‐ammonia‐N (NAN) flow to duodenum. The partition of NAN in microbial and feed N was estimated with lower reliability. The effects of variation of feeding level, feeding frequency and roughage quality (crude protein, lignin) on digestion processes have been simulated correctly. On the other hand, the effects of the proportion of roughage to concentrate have not been reproduced sufficiently with the mechanismes included in the model. To make correct predictions in this area too, it is necessary to integrate the rumen pH and its effects on rumen processes into the model. A mechanistic approach for estimation of the velocity constants for passage of substances out of the rumen would improve the model.  相似文献   

18.
Four ruminally fistulated Holstein heifers (BW = 264 ± 12 kg) were used in a 4 × 4 Latin square design experiment to determine the effect of increasing levels of sodium bicarbonate (BICARB; 0%, 1.25%, 2.50% and 5%, on concentrate dry matter (DM) basis) on DM intake (DMI), water consumption and ruminal fermentation. Sampling was carried out in the last week of each four 21-day experimental periods. Heifers were offered concentrate (13.4 ± 0.04% crude protein (CP), 13.3 ± 0.44% NDF, 51.7 ± 0.97% starch) and barley straw once daily at 0830 h ad libitum. There was a linear decrease in concentrate DMI and a linear increase in straw DMI with increasing buffer level in the diet, resulting in a tendency towards a linear decrease in total DMI. Intake of concentrate was 6.89, 7.66, 6.72 and 5.72 ± 0.83 kg/day, whereas straw intakes were 0.73, 0.84, 0.94 and 1.06 ± 0.14 kg/day, for the 0%, 1.25%, 2.5% and 5% BICARB, respectively. Water consumption was not affected by treatments when expressed as l/day or percentage of BW, but increased linearly when expressed as l/kg of DMI. The percentage of total daily water drunk in the morning (from 0830 to 1230 h) increased linearly with the level of buffer. Mean ruminal pH and total area under the pH curve were not affected with increasing buffer level. The lowest daily pH (5.65 ± 0.09) was not affected by treatments. A quadratic tendency (P 0.10) was observed in the number of hours and the area under the pH curve in which ruminal pH was below 5.8, with high values only at the 0% BICARB. Additionally, increasing bicarbonate level caused a linear increase in the ruminal pH at 2 and 4 h after feeding. Daily average NH3 N (2.4 ± 0.9 mg N/100 ml) and total volatile fatty acids (VFA) (143 ± 12 mM) concentrations were not affected by treatments. Daily average molar proportion of propionate decreased linearly, and acetate proportion and the acetate-to-propionate ratio were increased with increasing buffer level in the diet. Molar percentage of butyrate, isobutyrate and isovalerate, and branched-chain VFA concentration increased linearly as the level of bicarbonate increased in the diet. Results indicate that high levels of BICARB to finishing heifers fed high-concentrate diets may result in a decreased DMI without significant effects on mean ruminal pH, which may affect animal performance. All individual VFA proportions, except valerate, were changed by the addition of bicarbonate.  相似文献   

19.
Differential carbohydrate media and anaerobic replica plating techniques were used to assess the degrees of diurnal variations in the direct and viable cell counts as well as the carbohydrate-specific subgroups within the mixed rumen bacterial populations in cattle fed maintenance (metabolizable energy) levels of either a high-forage or a high-concentrate diet once daily. The rumen was sampled at 1 h before feeding and 2, 4, 8, 12, and 16 h after feeding, and selected microbiological parameters of the isolated bacterial populations were assessed. Corresponding samples of ruminal fluid were assayed for fermentation acids, carbohydrate, ammonia, and pH changes. The data showed that regardless of diet, total bacterial numbers remained fairly constant throughout the day. The number of viable bacteria declined 40 to 60% after feeding and then increased to a maximum at 16 h postfeeding. Changes occurred in the carbohydrate-specific subgroups within the bacterial populations, and some of the changes were consistent with a predicted scheme of ruminal feedstuff carbohydrate fermentation. Regardless of diet, however, soluble-carbohydrate-utilizing bacteria predominated at all times. Xylan-xylose and pectin subgroups respectively comprised about one-half and one-third of the population when the high-forage diet was given. These subgroups, along with the cellulolytics, constituted lesser proportions of the population when the high-concentrate diet was given. The cellulolytic subgroup was the least numerous of all subgroups regardless of diet but followed a diurnal pattern similar to that predicted for cellulose fermentation. There were few diurnal variations or differences in bacterial cell compositions and ruminal fluid parameters between diets. The observed similarities and dissimilarities of the rumen bacterial populations obtained when the two diets were given are discussed. The data are consistent with the versatility and constancy of the rumen as a stable, mature microbial system under the specific low-level feeding regimens used.  相似文献   

20.
Many feeding trials have been conducted to quantify enteric methane (CH4) production in ruminants. Although a relationship between diet composition, rumen fermentation and CH4 production is generally accepted, the efforts to quantify this relationship within the same experiment remain scarce. In the present study, a data set was compiled from the results of three intensive respiration chamber trials with lactating rumen and intestinal fistulated Holstein cows, including measurements of rumen and intestinal digestion, rumen fermentation parameters and CH4 production. Two approaches were used to calculate CH4 from observations: (1) a rumen organic matter (OM) balance was derived from OM intake and duodenal organic matter flow (DOM) distinguishing various nutrients and (2) a rumen carbon balance was derived from carbon intake and duodenal carbon flow (DCARB). Duodenal flow was corrected for endogenous matter, and contribution of fermentation in the large intestine was accounted for. Hydrogen (H2) arising from fermentation was calculated using the fermentation pattern measured in rumen fluid. CH4 was calculated from H2 production corrected for H2 use with biohydrogenation of fatty acids. The DOM model overestimated CH4/kg dry matter intake (DMI) by 6.1% (R2=0.36) and the DCARB model underestimated CH4/kg DMI by 0.4% (R2=0.43). A stepwise regression of the difference between measured and calculated daily CH4 production was conducted to examine explanations for the deviance. Dietary carbohydrate composition and rumen carbohydrate digestion were the main sources of inaccuracies for both models. Furthermore, differences were related to rumen ammonia concentration with the DOM model and to rumen pH and dietary fat with the DCARB model. Adding these parameters to the models and performing a multiple regression against observed daily CH4 production resulted in R2 of 0.66 and 0.72 for DOM and DCARB models, respectively. The diurnal pattern of CH4 production followed that of rumen volatile fatty acid (VFA) concentration and the CH4 to CO2 production ratio, but was inverse to rumen pH and the rumen hydrogen balance calculated from 4×(acetate+butyrate)/2×(propionate+valerate). In conclusion, the amount of feed fermented was the most important factor determining variations in CH4 production between animals, diets and during the day. Interactions between feed components, VFA absorption rates and variation between animals seemed to be factors that were complicating the accurate prediction of CH4. Using a ruminal carbon balance appeared to predict CH4 production just as well as calculations based on rumen digestion of individual nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号