首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   

2.
Electric organ discharge (EOD) frequency in the brown ghost knifefish (Apteronotus leptorhynchus) is sexually dimorphic, steroid-regulated, and determined by the discharge rates of neurons in the medullary pacemaker nucleus (Pn). We pharmacologically characterized ionic currents that regulate the firing frequency of Pn neurons to determine which currents contribute to spontaneous oscillations of these neurons and to identify putative targets of steroid action in regulating sexually dimorphic EOD frequency. Tetrodotoxin (TTX) initially reduced spike frequency, and then reduced spike amplitude and stopped pacemaker activity. The sodium channel blocker muO-conotoxin MrVIA also reduced spike frequency, but did not affect spike amplitude or production. Two potassium channel blockers, 4-aminopyridine (4AP) and kappaA-conotoxin SIVA, increased pacemaker firing rates by approximately 20% and then stopped pacemaker firing. Other potassium channel blockers (tetraethylammonium, cesium, alpha-dendrotoxin, and agitoxin-2) did not affect the pacemaker rhythm. The nonspecific calcium channel blockers nickel and cadmium reduced pacemaker firing rates by approximately 15-20%. Specific blockers of L-, N-, P-, and Q-type calcium currents, however, were ineffective. These results indicate that at least three ionic currents-a TTX- and muO-conotoxin MrVIA-sensitive sodium current; a 4AP- and kappaA-conotoxin SIVA-sensitive potassium current; and a T- or R-type calcium current-contribute to the pacemaker rhythm. The pharmacological profiles of these currents are similar to those of currents that are known to regulate firing rates in other spontaneously oscillating neural circuits.  相似文献   

3.
Rate-dependent repolarization (RDR) of action potential (AP) in cardiomyocyte plays a critical role in the genesis of arrhythmias and RDR in atrium has been linked with atrial fibrillation. However, detailed studies focusing on the role of RDR in rabbit atrium are scant. In this study, atrial cells were isolated from rabbit heart and rate-dependent property was explored in single atrial cell to elucidate the underlying mechanism. Our results indicated that rate-dependent prolongation was evident at the action potential duration at 20% (APD20) and 50% (APD50) repolarization but not at 90% repolarization (APD90) under control condition. Using transient outward potassium current (Ito) inhibitor 4-Aminopyridine (4-AP, 2 mM) effectively eliminated the changes in APD20 and APD50, and unmasked the rate-dependent reduction of APD90 which could be diminished by further adding L-type calcium current (ICaL) inhibitor nifedipine (30 μM). However, using the selective late sodium current (INaL) inhibitor GS-458967 (GS967, 1 μM) caused minimal effect on APD90 of atrial cells both in the absence and presence of 4-AP. In consistence with results from APs, Ito and ICaL displayed significant rate-dependent reduction because of their slow reactivation kinetics. In addition, the magnitude of INaL in rabbit atrium was so small that its rate-dependent changes were negligible. In conclusion, our study demonstrated that Ito and ICaL mediate RDR of AP in rabbit atrium, while minimal effect of INaL was seen.  相似文献   

4.
Beat-to-beat variability in repolarization (BVR) has been proposed as an arrhythmic risk marker for disease and pharmacological action. The mechanisms are unclear but BVR is thought to be a cell level manifestation of ion channel stochasticity, modulated by cell-to-cell differences in ionic conductances. In this study, we describe the construction of an experimentally-calibrated set of stochastic cardiac cell models that captures both BVR and cell-to-cell differences in BVR displayed in isolated canine action potential measurements using pharmacological agents. Simulated and experimental ranges of BVR are compared in control and under pharmacological inhibition, and the key ionic currents determining BVR under physiological and pharmacological conditions are identified. Results show that the 4-aminopyridine-sensitive transient outward potassium current, Ito1, is a fundamental driver of BVR in control and upon complete inhibition of the slow delayed rectifier potassium current, IKs. In contrast, IKs and the L-type calcium current, ICaL, become the major contributors to BVR upon inhibition of the fast delayed rectifier potassium current, IKr. This highlights both IKs and Ito1 as key contributors to repolarization reserve. Partial correlation analysis identifies the distribution of Ito1 channel numbers as an important independent determinant of the magnitude of BVR and drug-induced change in BVR in control and under pharmacological inhibition of ionic currents. Distributions in the number of IKs and ICaL channels only become independent determinants of the magnitude of BVR upon complete inhibition of IKr. These findings provide quantitative insights into the ionic causes of BVR as a marker for repolarization reserve, both under control condition and pharmacological inhibition.  相似文献   

5.
The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767–783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.  相似文献   

6.
Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both I BK and I A could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. I BK always increased the intracellular Ca2+ concentration, while I A could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns. Action Editor: Christiane Linster  相似文献   

7.
Gram-negative bacteria-induced infections result in fever, arrhythmia, and even death. Lipopolysaccharide (LPS), a constituent of bacteria, leads to an inflammatory response under sepsis and increase arrhythmogenesis. This study analyzed the effects on human embryonic stem cell-differentiated cardiomyocytes (HIPSC-CMs) exposed to LPS. A whole cell patch clamp was used to record the action potential (AP) and ionic currents with or without different doses of LPS in HIPSC-CMs. Compared with the control, a different dose (0.04, 0.2, 1, and 5 µg/ml) of LPS-treated HIPSC-CMs resulted in a longer AP duration. The IC50 of sodium channel current was 1.254 µg/ml, L-type calcium channel current was 5 µg/ml, and Ik channel currents were 1.254 µg/ml. LPS-treated HIPSC-CMs showed a lower sodium channel current, L-type calcium channel current, and Ik channel currents. Furthermore, the expressions of Nav1.5 were decreased, and L-Ca, Kv11.1, and Kv7.1 were increased in LPS-treated HIPSC-CMs. LPS-induced arrhythmogenesis was related to the electrophysiological characteristics of sodium channel current, L-type calcium channel current, and Ik channel currents. These results suggest a potential mechanism of cardiomyocyte injury in endotoxemia.  相似文献   

8.
A neuron that is stimulated by rectangular current injections initially responds with a high firing rate, followed by a decrease in the firing rate. This phenomenon is called spike-frequency adaptation and is usually mediated by slow K+ currents, such as the M-type K+ current (I M ) or the Ca2+-activated K+ current (I AHP ). It is not clear how the detailed biophysical mechanisms regulate spike generation in a cortical neuron. In this study, we investigated the impact of slow K+ currents on spike generation mechanism by reducing a detailed conductance-based neuron model. We showed that the detailed model can be reduced to a multi-timescale adaptive threshold model, and derived the formulae that describe the relationship between slow K+ current parameters and reduced model parameters. Our analysis of the reduced model suggests that slow K+ currents have a differential effect on the noise tolerance in neural coding.  相似文献   

9.
Cells in the pacemaker region of toad (Bufo marinus) sinus venosus had spontaneous rhythmic action potentials. The rate of firing of action potentials, the rate of diastolic depolarization and the maximum rate of rise of action potentials were reduced by TTX (10 nm to 1 m). Currents were recorded with the whole cell, tight seal technique from cells enzymatically dissociated from this region. Cells studied were identified as pacemaker cells by their characteristic morphology, spontaneous rhythmic action potential activity that could be blocked by cobalt but not by TTX and lack of inward rectification. When calcium, potassium and nonselective cation currents (If) activated by hyperpolarization were blocked, depolarization was seen to generate transient and persistent inward currents. Both were sodium currents: they were abolished by tetrodotoxin (10 to 100 nm), their reversal potential was close to the sodium equilibrium potential and their amplitude and reversal potential were influenced as expected for sodium currents when extracellular sodium ions were replaced with choline ions. The transient sodium current was activated at potentials more positive than –40 mV while the persistent sodium current was obvious at more negative potentials. It was concluded that, in toad pacemaker cells, TTX-sensitive sodium currents contributing both to the upstroke of action potentials and to diastolic depolarization may play an important role in setting heart rate.We thank the Australian National Heart Foundation for their support. D.A.S. is an NHMRC Senior Research Officer.  相似文献   

10.
成年蜜蜂脑神经细胞的培养和电生理特征   总被引:1,自引:0,他引:1  
为了研究杀虫剂等对蜜蜂毒性作用的神经机制,需在体外建立成年蜜蜂脑神经细胞的分离培养和电生理记录技术并研究其正常电生理特征,而对成年蜜蜂脑神经细胞的分离培养和电生理特性的研究报道甚少。我们采用酶解和机械吹打相结合的方法获得了数量较多且活力较好的成年意大利蜜蜂Apis mellifera脑神经细胞,并用全细胞膜片钳技术研究了成年意大利蜜蜂脑神经细胞对电流和电压刺激的反应,获得了成年意蜂脑神经细胞的基本电生理特征以及钠电流和钾电流的特性。全细胞电流钳的记录结果表明,在体外培养条件下,细胞无自发放电发生,注射电流后仅引起细胞单次放电,引起细胞放电的阈电流平均为60.8±63 pA; 细胞动作电位产生的阈电位平均为−27.4±2.3 mV。用全细胞电压钳记录了神经细胞的钠电流和钾电流。钠电流的分离是在电压刺激下通过阻断钾通道和钙通道实现。细胞的内向钠电流在指令电压为−40~−30 mV左右激活,−10 mV达峰值,钠通道的稳态失活电压V1/2为−58.4 mV; 外向钾电流成份至少包括较小的快速失活钾电流和和较大的缓慢失活钾电流(占总钾电流的80%),其半激活膜电位V1/2为3.86 mV,无明显的稳态失活。结果提示缓慢失活钾电流的特征可能是细胞单次放电的机制之一。  相似文献   

11.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

12.
The role of IKCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of IKCa blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The IKCa blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by IKCa blockade in all of the groups studied. IKCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. IKCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, IKCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for IKCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.  相似文献   

13.
Spider venoms are known to contain various toxins that are used as an effective means to capture their prey or to defend themselves against predators. An investigation of the properties of Ornithoctonus huwena (O.huwena) crude venom found that the venom can block neuromuscular transmission of isolated mouse phrenic nerve-diaphragm and sciatic nerve-sartorius preparations. However, little is known about its electrophysiological effects on cardiac myocytes. In this study, electrophysiological activities of ventricular myocytes were detected by 100 μg/mL venom of O.huwena, and whole cell patch-clamp technique was used to study the acute effects of the venom on action potential (AP), sodium current (INa), potassium currents (IKr, IKs, Ito1 and IK1) and L-type calcium current (ICaL). The results indicated that the venom prolongs APD90 in a frequency-dependent manner in isolated neonatal rat ventricular myocytes. 100 μg/mL venom inhibited 72.3 ± 3.6% INa current, 58.3 ± 4.2% summit current and 54 ± 6.1% the end current of IKr, and 65 ± 3.3% ICaL current, yet, didn't have obvious effect on IKs, Ito1 and IK1 currents. In conclusion, the O.huwena venom represented a multifaceted pharmacological profile. It contains abundant of cardiac channel antagonists and might be valuable tools for investigation of both channels and anti- arrhythmic therapy development.  相似文献   

14.
Heart cells from the clam Ruditapes decussatus were routinely cultured with a high level of reproducibility in sea water based medium. Three cell types attached to the plastic after 2 days and could be maintained in vitro for at least 1 month: epithelial-like cells, round cells and fibroblastic cells. Fibroblastic cells were identified as functional cardiomyocytes due to their spontaneous beating, their ultrastructural characteristics and their reactivity with antibodies against sarcomeric α-actinin, sarcomeric tropomyosin, myosin and troponin T-C. Patch clamp measurements allowed the identification of ionic currents characteristic of cardiomyocytes: a delayed potassium current (I K slow) strongly suppressed (95%) by tetraethylammonium (1 mM), a fast inactivating potassium current (I K fast) inhibited (50%) by 4 amino-pyridine at 1 mM and, at a lower level (34%) by TEA, a calcium dependent potassium current (I KCa) activated by strong depolarization. Three inward voltage activated currents were also characterized in some cardiomyocytes: L-type calcium current (I Ca) inhibited by verapamil at 5 × 10−4 M, T-type Ca2+ current, rapidly activated and inactivated, and sodium current (I Na) observed in only a few cells after strong hyperpolarization. These two currents did not seem to be physiologically essential in the initiation of the beatings of cardiomyocytes. Potassium currents were partially inhibited by tributyltin (TBT) (1 μM) but not by okadaic acid (two marine pollutants). DNA synthesis was also demonstrated in few cultured cells using BrdU (bromo-2′-deoxyuridine). Observed effects of okadaic acid and TBT demonstrated that cultured heart cells from clam Ruditapes decussatus can be used as an experimental model in marine toxicology.  相似文献   

15.
BK channels are large conductance potassium channels gated by calcium and voltage. Paradoxically, blocking these channels has been shown experimentally to increase or decrease the firing rate of neurons, depending on the neural subtype and brain region. The mechanism for how this current can alter the firing rates of different neurons remains poorly understood. Using phase-resetting curve (PRC) theory, we determine when BK channels increase or decrease the firing rates in neural models. The addition of BK currents always decreases the firing rate when the PRC has only a positive region. When the PRC has a negative region (type II), BK currents can increase the firing rate. The influence of BK channels on firing rate in the presence of other conductances, such as I m and I h , as well as with different amplitudes of depolarizing input, were also investigated. These results provide a formal explanation for the apparently contradictory effects of BK channel antagonists on firing rates.  相似文献   

16.
A controversy of long standing in membrane electrophysio-logy is whether the sodium ion current (INa) and potassium ion current (IK) pass through the membrane in separate channels, or through a single set of channels which conduct first INa and then IK. In support of the latter hypothesis it has been noted that the sodium conductance (gNa) decline, called inactivation, proceeds with about the same time course as the potassium conductance (gK) increase. This could mean that Na+ selective channels are being converted into K+ selective channels. The hypothesis is especially interesting because of the possibility that the carrier postulated in active transport is convertible from Na+ to K+ selectivity1. An explicit statement of the single channel hypothesis and the means for disproving it were given by Mullins2. Because a single channel could not simultaneously conduct INa and IK, disproof requires that membrane conductance (gm) be made somehow to exceed the maximum value of gNa or gK. We report here that inactivation of gNa can be destroyed fairly selectively by the action from inside the axon of the unspecific proteolytic enzymes of pronase. In many cases gm after pronase treatment is greater than maximum gK before treatment, making untenable the single channel hypothesis.  相似文献   

17.
Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca2+ current and the small conductance K+ (SK) current that is unmasked by fast Na+ current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca2+ and the A-type K+ currents. The model identifies the channel densities for the fast Na+ and the delayed rectifier K+ currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca2+ accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.  相似文献   

18.

Background

The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.

Methods

Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model.

Results

Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 µM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 µg/kg) significantly lengthened the QTc interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QTc. Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 µM) decreased the amplitude of rapid (IKr) and slow (IKs) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (ICa) was slightly diminished, but the transient outward (Ito) and inward rectifier (IK1) potassium currents were not influenced.

Conclusions

Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve.  相似文献   

19.
Lysophosphatidic acid (LPA) has diverse actions on the cardiovascular system and is widely reported to modulate multiple ion currents in some cell types. However, little is known about its electrophysiological effects on cardiac myocytes. This study investigated whether LPA has electrophysiological effects on isolated rabbit myocardial preparations. The results indicate that LPA prolongs action potential duration at 90% repolarization (APD90) in a concentration- and frequency-dependent manner in isolated rabbit ventricular myocytes. The application of extracellular LPA significantly increases the coefficient of APD90 variability. LPA increased L-type calcium current (ICa,L) density without altering its activation or deactivation properties. In contrast, LPA has no effect on two other ventricular repolarizing currents, the transient outward potassium current (Ito) and the delayed rectifier potassium current (IK). In arterially perfused rabbit left ventricular wedge preparations, the monophasic action potential duration, QT interval, and Tpeak-end are prolonged by LPA. LPA treatment also significantly increases the incidence of ventricular tachycardia induced by S1S2 stimulation. Notably, the effects of LPA on action potentials and ICa,L are PTX-sensitive, suggesting LPA action requires a Gi-type G protein. In conclusion, LPA prolongs APD and increases electrophysiological instability in isolated rabbit myocardial preparations by increasing ICa,L in a Gi protein-dependent manner.  相似文献   

20.
The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or I A) current and a slow inactivating (D-current or I D) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (I K), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and I K, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and I K when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号