首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Dehydroepiandrosterone (DHEA), a 19-carbon precursor of sex steroids, is abundantly produced in the human but not the mouse adrenal. However, mice produce DHEA and DHEA-sulfate (DHEAS) in the fetal brain. DHEA stimulates axonal growth from specific populations of mouse neocortical neurons in vitro, while DHEAS stimulates dendritic growth from those cells. The synthesis of DHEA and sex steroids, but not mouse glucocorticoids and mineralocorticoids, requires P450c17, which catalyzes both 17 alpha-hydroxylase and 17,20-lyase activities. We hypothesized that P450c17-knockout mice would have disordered sex steroid synthesis and disordered brain DHEA production and thus provide phenotypic clues about the functions of DHEA in mouse brain development. We deleted the mouse P450c17 gene in 127/SvJ mice and obtained several lines of mice from two lines of targeted embryonic stem cells. Heterozygotes were phenotypically and reproductively normal, but in all mouse lines, P450c17(-/-) zygotes died by embryonic day 7, prior to gastrulation. The cause of this early lethality is unknown, as there is no known function of fetal steroids at embryonic day 7. Immunocytochemistry identified P450c17 in embryonic endoderm in E7 wild-type and heterozygous embryos, but its function in these cells is unknown. Enzyme assays of wild-type embryos showed a rapid rise in 17-hydroxylase activity between E6 and E7 and the presence of C(17,20)-lyase activity at E7. Treatment of pregnant females with subcutaneous pellets releasing DHEA or 17-OH pregnenolone at a constant rate failed to rescue P450c17(-/-) fetuses. Treatment of normal pregnant females with pellets releasing pregnenolone or progesterone did not cause fetal demise. These data suggest that steroid products of P450c17 have heretofore-unknown essential functions in early embryonic mouse development.  相似文献   

2.
We have investigated the metabolism of [14C]-labelled progesterone (P4) and dehydroepiandrosterone (DHEA) by kidney tissues of newborn and 7-, 15-, 30-, 60- and 365-day-old rats of both sexes. The following enzymes were revealed at all ages by radiochemical identification of the corresponding products: 5alpha-reductase, cytochromes P450c17 and P450c21, 3beta-hydroxysteroid dehydrogenase (HSD)/delta5-delta4 isomerase, and 17beta- and 20alpha-HSDs, catalyzing reductive reactions. The major P4 metabolites were 5alpha-reduced C21 steroids, whose formation was almost completely suppressed by the 5alpha-reductase 4-azasteroid inhibitor, PNU 156765. Androstenedione and testosterone were also formed via 17alpha-hydroxyprogesterone, together with 11-deoxycorticosterone and 20alpha-dihydroprogesterone. DHEA was mainly converted to androst-5-ene-3beta,17beta-diol, with smaller amounts of the above androgens. Cytochrome P450c17 mRNA and protein were demonstrated by Northern blotting and Western blotting analyses, respectively. P450c17 mRNA, assessed by Northern blotting, protein and catalytic activity all peaked in the kidney samples at 15 days of life and declined thereafter. Cytochrome P450arom was below the level of detection of semi-quantitative RT-PCR. Since the rat kidney has been previously shown to contain cytochrome P450scc as well as androgen and estrogen receptors, it is suggested that it is capable of autonomous hormonal steroidogenesis and that renal steroids, or nephrosteroids, may act locally, in a paracrine or autocrine fashion.  相似文献   

3.
4.
We have investigated the localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the cartilaginous fish, Scyliorhinus canicula, using the indirect immunofluorescence technique. Immunoreactive perikarya and fibers were observed in two regions of the telencephalon, the area superficialis basalis and the area periventricularis ventrolateralis. In the diencephalon, the hypothalamus exhibited a moderate number of ANF-containing neurons and fibers located in the preoptic and periventricular nuclei and in the nucleus lateralis tuberis. The most important group of ANF-immunoreactive cells was observed in the nucleus tuberculi posterioris of the diencephalon. In contrast, the mesencephalon showed only a few ANF-positive nerve processes located in the tegmentum mesencephali. Numerous fine fibers and nerve terminals were found in the dorsal area of the neurointermediate lobe of the pituitary. These results provide the first evidence for the presence of ANF-related peptides in the brain of a cartilaginous fish. The widespread distribution of ANF-positive cells and fibers in the brain and pituitary suggests that this peptide may act both as a neurotransmitter and (or) a neurohormone in fish.  相似文献   

5.
The 5alpha-reduction of testosterone in target tissues is a key step in androgen physiology; however, 5alpha-reduced C(19) steroids are sometimes synthesized in testis via a pathway that does not involve testosterone as an intermediate. We studied the metabolism of 5alpha-reduced C(21) steroids by human cytochrome P450c17 (hCYP17), the enzyme responsible for conversion of C(21) steroids to C(19) steroids via its 17alpha-hydroxylase and 17,20-lyase activities. hCYP17 17alpha-hydroxylates 5alpha-pregnan-3,20-dione, but little androstanedione is formed by 17,20-lyase activity. hCYP17 also 17alpha-hydroxylates 5alpha-pregnan-3alpha-ol-20-one and the 5alpha-pregnan-3alpha,17alpha-diol-20-one intermediate is rapidly converted to androsterone by 17,20-lyase activity. Furthermore, 5alpha-pregnan-3alpha,17alpha-diol-20-one is a better substrate for the 17,20-lyase reaction than the preferred substrate 17alpha-hydroxypregnenolone and cytochrome b(5) stimulates androsterone formation only 3-fold. Both 5alpha-pregnan-3alpha-ol-20-one and 5alpha-pregnan-3alpha,17alpha-diol-20-one bind to hCYP17 with higher affinity than does progesterone. We conclude that 5alpha-reduced, 3alpha-hydroxy-C(21) steroids are excellent, high-affinity substrates for hCYP17. The brisk metabolism of 5alpha-pregnan-3alpha,17alpha-diol-20-one to androsterone by CYP17 explains how, when 5alpha-reductases are present, the testis can produce C(19) steroids androsterone and androstanediol from 17alpha-hydroxyprogesterone without the intermediacy of androstenedione and testosterone.  相似文献   

6.
The distribution of three types of arginine vasotocin (AVT) receptors in the brain and pituitary of the newt Cynops pyrrhogaster, namely, the V1a-, V2-, and V3/V1b-type receptors, was studied by means of in situ hybridization and immunohistochemistry. mRNA signals and immunoreactive cells for the V1a-type receptor were observed in the telencephalon (mitral layer of the olfactory bulb, dorsal and medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali, bed nucleus of the stria terminalis), diencephalon (anterior preoptic area, magnocellular preoptic nucleus, suprachiasmatic nucleus, ventral thalamus, dorsal and ventral hypothalamic nucleus), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (median reticular formation, nucleus motorius tegmenti). Cells expressing the V2-type receptor were found in the telencephalon (medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali), and mesencephalon (tegmentum trigemini and facialis). In the paraphysis (possibly the main site of cerebrospinal fluid production), only V2-type receptor mRNA signal and immunoreactivity were detected. V3/V1b-type receptor mRNA was expressed in the diencephalon (dorsal hypothalamic nucleus, nucleus tuberculi posterioris), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (raphe nucleus), whereas V3/V1b-type-receptor-like immunoreactivity was scarcely detectable in the entire brain. The V3/V1b-type receptor was predominantly expressed in the anterior pituitary. V3/V1b-type receptor and proopiomelanocortin mRNAs were co-localized in the distal lobe of the pituitary. This is the first report of the distribution of three types of AVT receptor in the brain and pituitary of non-mammalian vertebrates.  相似文献   

7.
We have investigated the localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the cartilaginous fish, Scyliorhinus canicula, using the indirect immunofluorescence technique. Immunoreactive perikarya and fibers were observed in two regions of the telencephalon, the area superficialis basalis and the area periventricularis ventrolateralis. In the diencephalon, the hypothalamus exhibited a moderate number of ANF-containing neurons and fibers located in the preoptic and periventricular nuclei and in the nucleus lateralis tuberis. The most important group of ANF-immunoreactive cells was observed in the nucleus tuberculi posterioris of the diencephalon. In contrast, the mesencephalon showed only a few ANF-positive nerve processes located in the tegmentum mesencephali. Numerous fine fibers and nerve terminals were found in the dorsal area of the neurointermediate lobe of the pituitary. These results provide the first evidence for the presence of ANF-related peptides in the brain of a cartilaginous fish. The widespread distribution of ANF-positive cells and fibers in the brain and pituitary suggests that this peptide may act both as a neurotransmitter and (or) a neurohormone in fish.  相似文献   

8.
Most previous studies using reconstituted systems and fast kinetics suggest that the conversion of pregnenolone to dehydroepiandrosterone (DHEA; the precursor of androgen and estrogen biosynthesis) by P450c17 does not require the release of the intermediate 17alpha-OHPreg (a precursor of cortisol biosynthesis). With such a mechanism, it is difficult to conceive how high amounts of DHEA may be produced in some cells or tissues, such as the testis and cells from the adrenal reticularis, while in other tissues such as the fasciculata zone, high levels of 17alpha-OHPreg are synthesized. In this report, we address this matter using intact transfected cells, which better reflect the actual cellular conditions. Furthermore, by using transfected cells, we can conveniently analyze human enzymes, as we are not restricted by the availability of human tissues as in the case of methods using purified or partially purified enzymes. Using intact HEK-293 cells transfected with human P450c17 in culture, we showed, in a time course study of the transformation of pregnenolone, that there is an accumulation of 17alpha-OHPreg, and that, subsequently, the accumulated 17alpha-OHPreg decreases with a concomitant increase in DHEA production. The DHEA/17alpha-OHPreg ratio changes from 0.1 :1 after 1 h incubation to 50 : 1 after 20 h. This result strongly suggests that the transformation of Preg to DHEA proceeds through two steps in which DHEA is produced from the released intermediate 17alpha-OHPreg. We also show that high levels of substrate vs. enzyme concentration will lead to high hydroxylase activity whereas the reverse will increase the lyase activity. The result is in good agreement with recent observations suggesting that surrounding enzymes and steroids could modulate the lyase activity. Cotransfection of vectors expressing cytochrome b5 and NADPH cytochrome P450 reductase indicates that both are required for an optimum production of DHEA.  相似文献   

9.
Summary The avidin-biotin peroxidase technique was used to determine the distribution of natriuretic peptides in the hearts and brains of the dogfishSqualus acanthias and the Atlantic hagfishMyxine glutinosa. Three antisera were used: one raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide, but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); and the third raised against rat atrial natriuretic peptide (termed rat atrial natriuretic peptide-like immunoreactivity). Only natriuretic peptide-like immunoreactivity was observed in the heart ofS. acanthias which was most likely due to the antiserum cross-reacting with C-type natriuretic peptide. No immunoreactivity was found in theM. glutinosa heart. In the brain ofS. acanthias, natriuretic peptide-like immunoreactive fibres were located in many areas of the telencephalon, diencephalon, mesencephalon, rhombencephalon, and spinal cord. Extensive immunoreactivity was observed in the hypothalamo-hypophyseal tract and the neurointermediate lobe of the hypophysis. Natriuretic peptide-like immunoreactive perikarya were found in ventromedial regions of the telencephalon and in the nucleus preopticus. Most perikarya had short, thick processes which extended toward the ventricle. Another group of perikarya was observed in the rhombencephalon. Porcine brain natriuretic peptide-like immunoreactive fibres were observed in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, but perikarya were only present in the preoptic area. In theM. glutinosa brain, natriuretic peptide-like immunoreactive fibres were present in all regions. Immunoreactive perikarya were observed in the pallium, primordium hippocampi, pars ventralis thalami, pars dorsalis thalami, nucleus diffusus hypothalami, nucleus profundus, nucleus tuberculi posterioris, and nucleus ventralis tegmenti. Procine brain natriuretic peptide-like immunoreactive perikarya and fibres had a similar, but less abundant distribution than natriuretic peptide-like immunoreactive structures. Although the chemical structures of natriuretic peptides in the brains of dogfish and hagfish are unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic peptide or porcine C-type natriuretic peptide. The presence of natriuretic peptides in the brain suggest they could be important neuromodulators and/or neurotransmitters. Furthermore, there appears to be divergence in the structural forms of natriuretic peptides in the hearts and brains of dogfish and hagfish.  相似文献   

10.
The distribution of neuropeptide Y-like immunoreactivity in the brain and hypophysis of the brown hagfish, Paramyxine atami, was examined by use of the peroxidase-antiperoxidase method. Immunoreactive cells were found in two areas of the brain, the nucleus hypothalamicus of the diencephalon and the ventrolateral area of the caudal tegmentum, at the level of the nucleus motorius V–VII. The labeled cells of the nucleus hypothalamicus were loosely grouped and recognized as bipolar neurons. Immunolabeled fibers were widely distributed in the brain, showing the highest density in the diencephalon. They were sparse, or absent, in the olfactory bulb, habenula, primordium hippocampi, neurohypophysis, corpus interpedunculare, and dorsolateral area of the medulla oblongata. The fibers appeared to project exclusively from the ventral hypothalamus to various other portions of the brain: the anterolateral areas of the telencephalon via the basal hypothalamus, the pars dorsalis thalami, the dorsocaudal region of the mesencephalon, and the ventromedial portions of the tegmentum and anterior medulla oblongata. These findings suggest that, in the brown hagfish, NPY-like substance is involved in neuroregulation of various cerebral areas, but it may be of little significance in the control of pituitary function.  相似文献   

11.
Cytochrome P450 17 alpha-hydroxylase/C17-20 lyase (P45017 alpha) catalyzes the conversion of C-21 steroids to C-19 steroids in gonads. A full-length mouse cDNA encoding P450 17 alpha was isolated from a mouse Leydig cell library and characterized by restriction mapping and sequencing. The predicted amino acid sequence has 83% homology to rat, 66% homology to human, and 62% homology to bovine P45017 alpha amino acid sequences. The protein is 507 amino acids in length, which is 1 amino acid shorter than the human protein and 2 amino acids shorter than the bovine protein. The structural gene encoding P450 17 alpha (Cyp17) was localized utilizing an interspecific testcross to mouse chromosome 19, distal to Got-1. Another cytochrome P450, P4502c (Cyp2c), also is located at the distal end of chromosome 19. CYP17, CYP2c, and GOT1 have been mapped to human chromosome 10, with CYP2C and GOT1 mapped to the distal region, q24.3 and q25.3, respectively. The data in the present study indicate conserved syntenic loci on mouse chromosome 19 and human chromosome 10 and predict that the structural gene encoding P45017 alpha will be found distal to GOT1 on human chromosome 10.  相似文献   

12.
Cytochrome P450 17α-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17α-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe2+-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO4. Fe2+ caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe2+-sensitive CYP17-independent pathway.  相似文献   

13.
Although the mare corpus luteum (CL) is capable of aromatization, the expression of other enzymes involved in estradiol synthesis is not yet clear. This study examined the localization of P450C17 in the mare CL at different stages of its functional development. In ovaries from follicular phase mares P450C17 was localized in the theca cells of ovarian follicles. Following ovulation, no immunostaining for P450C17 was detected in the mature CLs of nonpregnant mares. In pregnant mares, no immunostaining for P450C17 was identified in the corpus luteum prior to secretion of eCG by the feto placental unit at Day 35 of pregnancy. The P450C17 was found to be expressed in CLs retrieved from Day 40 of pregnancy onwards. The changing expression of P450C17 raises the possibility that this may be a regulatory step for estrogen synthesis in the mare ovary.  相似文献   

14.
The anatomical distribution of atrial natriuretic peptide (ANP)-immunoreactive structures and the autoradiographic localization of ANP binding sites were studied in the brain of the Antarctic fish, Chionodraco hamatus. ANP-containing elements were colocated with ANP binding sites in the dorsal medial and lateral subdivisions of the telencephalon, prethalamic nuclear complex, and in the nucleus of the medial longitudinal fasciculus of the mesencephalon. However, mismatching was observed in other brain regions, particularly at mesencephalic and metencephalic levels. In the pituitary, ANP immunoreactivity occurred only in the pars distalis, whereas ANP binding sites were localized in the whole pituitary. In this paper we describe the occurrence of ANP immunoreactivity and ANP binding sites in the brain and pituitary of an Antarctic fish. In particular, in the cerebellum and pituitary of C. hamatus, ANP binding sites are distributed in corresponding brain regions of dipnoans, amphibians and mammals. The immunocytochemical and histoautoradiographic data suggest that ANP acts as neuromodulator in the brain of C. hamatus. Moreover, the presence of ANP-like substances in tanycytes lining the diencephalic ventricle suggests a chemosensorial role for such liquor-contacting cells and a possible modulatory effect of ANP on the osmoregulation of the cerebrospinal fluid. Accepted: 3 April 2000  相似文献   

15.
Antarctic notothenioids have developed unique freezing-resistance adaptations, including brain diversification, to survive in the subzero waters of the Southern Ocean surrounding Antarctica. In this study we have investigated the anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactive elements in the brain of the Antarctic fish Trematomus bernacchii, by using an antiserum raised against porcine NPY. Perikarya exhibiting NPY-like immunoreactivity were observed in distinct regions of the brain. The most rostral group of immunoreactive perikarya was found in the telencephalon, within the entopeduncular nucleus. In the diencephalon, three groups of NPY-like immunoreactive perikarya were found in the hypothalamus. Two groups of positive cell bodies were found in distinct populations of the preoptic nucleus, whereas the other group was found in the nucleus of the lateral recess. More caudally, NPY immunoreactivity was detected in large neurons located in the subependymal layers of the dorsal tegmentum of the mesencephalon, medially to the torus semicircularis. NPY-like immunoreactive nerve fibres were more widely distributed throughout the telencephalon to the rhombencephalon. High densities of nerve fibres and terminals were observed in several regions of the telencephalon, olfactory bulbs, hypothalamus, tectum of the mesencephalon and in the ventral tegmentum of the rhombencephalon. The distribution of NPY-like immunoreactive structures suggests that, in Trematomus, this peptide may be involved in the control of several brain functions, including olfactory activity, feeding behaviour, and somatosensory and visual information. In comparison with other neuropeptides previously described in the brain of Antarctic fish, NPY is more widely distributed. Our data also indicate the existence of differences in the brain distribution of NPY between Trematomus and other teleosts. In contrast with previous results reported in other fish, Trematomus contains positive fibres in the olfactory bulbs and immunoreactive perikarya in the nucleus of the lateral recess, whereas NPY-immunopositive cell bodies are absent in the thalamus and rhombencephalon, and no NPY immunoreactivity is present in the pituitary. These differences could be related to the Antarctic ecological diversity of notothenioids living at subzero temperatures.  相似文献   

16.
J C Stevens  J Y Jaw  C T Peng  J Halpert 《Biochemistry》1991,30(15):3649-3685
A series of progesterone derivatives has been studied as potential inactivators of the bovine adrenocortical cytochromes P450, P450 17 alpha, and P450 C-21. Replacement of the 21-methyl group of progesterone with a difluoromethyl group resulted in a selective inactivator of P450 C-21 in a reconstituted system. The loss of 21-hydroxylase activity caused by this compound exhibits a number of characteristics of mechanism-based inactivation including NADPH dependence, pseudo-first-order kinetics, saturability, irreversibility, and protection by substrate. In addition to the difluoro compound, 21,21-dichloroprogesterone, the acetylenic compound pregn-4-en-20-yn-3-one, and the olefinic compound pregna-4,20-dien-3-one all inactivate P450 C-21. In contrast, the only compound to inactivate the rabbit adrenal progesterone 21-hydroxylase is 21,21-dichloroprogesterone. In binding studies, the 21,21-dihalo steroids produce a greater maximal type I spectral shift of P450 C-21 than the two 17 beta-unsaturated steroids. The dihalo compounds inactivate P450 C-21 by both heme destruction and protein modification as shown by significant decreases in residual 21-hydroxylase activity and spectrally detectable P450 after incubation with P450 C-21 in a reconstituted system. Liquid chromatographic and mass spectral analyses of the organic extracts from these incubations showed that 21-pregnenoic acid is a major metabolite of the dihalo compounds with a partition ratio of 5 nmol of acid produced/nmol of P450 C-21 inactivated. This supports the hypothesis that inactivation proceeds in part through an acyl halide intermediate. In contrast, the acetylenic compound pregn-4-en-20-yn-3-one inactivates P450 C-21 mainly by protein modification, producing an NADPH-dependent irreversible type I spectral shift. The stoichiometry of inactivation is approximately 1.5 nmol of compound bound/nmol of enzyme inactivated, indicating selective modification of the enzyme at or near the substrate binding site.  相似文献   

17.
The 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) and 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) enzymes are important in determining the balance of the synthesis of different steroids such as progesterone (P4), glucocorticoids, androgens, and estrogens. How this is achieved is not a simple matter because each of the two enzymes utilizes more than one substrate and some substrates are shared in common between the two enzymes. The two synthetic pathways, Δ(4) and Δ(5), are interlinked such that it is difficult to predict how the synthesis of each steroid changes when any of the enzyme activities is varied. In addition, the P450c17 enzyme exhibits different substrate specificities among species, particularly with respect to the 17,20-lyase activity. The mathematical model developed in this study simulates the network of reactions catalyzed by 3β-HSD and P450c17 that characterizes steroid synthesis in human, non-human primate, ovine, and bovine species. In these species, P450c17 has negligible 17,20-lyase activity with the Δ(4)-steroid 17α-hydroxy-progesterone (17OH-P4); therefore androstenedione (A4) is synthesized efficiently only from dehydroepiandrosterone (DHEA) through the Δ(5) pathway. The model helps to understand the interplay between fluxes through the Δ(4) and Δ(5) pathways in this network, and how this determines the response of steroid synthesis to the variation in 3β-HSD activity or in the supply of the precursor substrate, pregnenolone (P5). The model simulations show that A4 synthesis can change paradoxically when 3β-HSD activity is varied. A decrease in 3β-HSD activity to a certain point can increase A4 synthesis by favouring metabolism through the Δ(5) pathway, though further decrease in 3β-HSD activity beyond that point eventually limits A4 synthesis. The model also showed that due to the competitive inhibition of the enzymes' activities by substrates and products, increasing the rate of P5 supply above a certain point can suppress the synthesis of A4, DHEA, and 17OH-P4, and consequently drive more P5 towards P4 synthesis.  相似文献   

18.
Recently, we have shown that the biosynthesis of androstenol, a potential endogenous ligand for the orphan receptors constitutive androstane receptor and pregnane-X-receptor, requires the presence of enzymes of the steroidogenic pathway, such as 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase. In this report, we examine at the molecular level whether the enzyme 17 alpha-hydroxylase/17,20-lyase (P450c17), which possesses dual 17 alpha-hydroxylase and 17,20-lyase activities and catalyzes the production of precursors for glucocorticoids and sex steroids, is also able to catalyze the formation of a third class of active steroids, 16-ene steroids (including androstenol). The role of components of the P450 complex is also assessed. We transfected human embryonic kidney (HEK-293) cells with various amounts of vectors expressing P450c17, NADPH-cytochrome P450 reductase, and cytochrome b5. Our results showed that P450c17 possesses a 16-ene-synthase activity able to transform pregnenolone into 5,16-androstadien-3 beta-ol, without the formation of the precursor 17-hydroxypregnenolone. Cytochrome b5 has a much stronger effect on the 16-ene-synthase activity than on the 17 alpha-hydroxylase/17,20-lyase activities. On the other hand, P450reductase has a drastic effect on the latter, but a negligible one on 5,16-androstadien-3 beta-ol synthesis. Our results therefore demonstrate that human P450c17, as other enzymes of the classical steroidogenic pathway, is involved in the biosynthetic pathway leading to the formation of androstenol.  相似文献   

19.
Expression of a full-length cDNA encoding bovine adrenal cytochrome P450C21   总被引:1,自引:0,他引:1  
Two full-length cDNA clones encoding bovine adrenocortical P450C21 have been constructed in a eukaryotic expression vector using partial-length cDNAs whose structures have been previously reported. Following expression of these cDNAs in COS 1 cells, the substrate specificity of P450C21 was determined. Of the 18 steroids tested, progesterone, 17 alpha-hydroxyprogesterone, and 11 beta,17 alpha-dihydroxyprogesterone were found to be the only steroids to serve as substrates for this adrenal enzyme, a much higher degree of substrate specificity than has been reported for a hepatic 21-hydroxylase. The Vmax for 17 alpha-hydroxyprogesterone was 2.5 times greater than that for progesterone, whereas delta 5-steroids were unable to serve as substrate for this enzyme. A difference between the two cDNAs is located at amino acid 401 where one resultant enzyme contains tyrosine while the other contains histidine. This amino acid difference appears to have no effect on the kinetic properties of adrenal P450C21.  相似文献   

20.
The 17 alpha-hydroxylase and 17,20-lyase activities of P450c17 lead to the production of 17 alpha-hydroxypregnenolone (17 alpha-OH-Preg) and dehydroepiandrosterone (DHEA), respectively, in different tissues. The mechanisms of differential regulation of these two activities are not yet fully elucidated. It has been previously shown that cytochrome b5 (cyt-b5) could facilitate the 17,20-lyase activity of human P450c17. Recently, a cDNA (type 2 cyt-b5) sharing 45.8% homology with type 1 cyt-b5 has been isolated from human testis. Since high 17,20-lyase activity is required for the production of androgens in the testis, we wanted to determine the importance of this second cDNA in the modulation of P450c17 17,20-lyase activity and hence, its role in the formation of active androgens. We therefore isolated type 2 cyt-b5 from human testis by RT-PCR and analyzed, by transient transfection in transformed human embryonic kidney cells (HEK-293) of various amounts of vectors expressing cyt-b5, P450-reductase and P450c17, its ability to modulate the 17,20-lyase activity of human P450c17. Results show that, in the presence of NADPH cytochrome P450 reductase (P450-red), type 2 cyt-b5 increases 17,20-lyase activity to a level comparable to that of type 1. These results support the idea that types 1 and 2 cyt-b5 could be involved in the differential modulation of 17 alpha-hydroxylase and 17,20-lyase activities of P450c17. Furthermore, the analysis of mRNA expression of types 1 and 2 cyt-b5 by RT-PCR using primers specific to each type showed that both types are present in the liver but also in the adrenal and testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号