首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

2.
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.  相似文献   

3.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

4.
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.  相似文献   

5.
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by memory and cognitive loss, the formation of senile plaques containing amyloid-beta (Abeta) peptide, degeneration of the cholinergic neurons and the development of neurofibrillary tangles. The build-up of Abeta is considered to be a central feature in the pathogenesis of AD. However, other critical molecular and neurochemical alterations too occur, such as a cholinergic dysfunction. As concerns the pathomechanism of the disease, both the amyloid cascade hypothesis and the cholinergic hypothesis of AD are widely accepted. This review surveys recent in vitro and in vivo experimental evidence relating to these two hypotheses. Bidirectional pathways linking them as regards the cholinergic neurotoxicity of Abeta and the regulatory mechanisms of cholinergic receptor activation or enzyme inhibition in the processing of the amyloid precursor protein are also discussed. Further work is warranted to elucidate the exact effects in the interactions between the cholinergic and amyloid hypotheses of the candidate drugs used in AD therapy.  相似文献   

6.
Therapeutic Strategies for Alzheimer’s Disease   总被引:1,自引:0,他引:1  
Therapeutic approaches for Alzheimer's disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa beta-amyloid (Abeta) peptides, with the more amyloidogenic, 42 amino acid form (Abeta42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Abeta42, amyloid therapeutics aim to reduce the amount of toxic Abeta42 aggregates. Amyloid-based therapies include gamma-secretase inhibitors and modulators, BACE inhibitors, aggregation blockers, catabolism inducers, and anti-Abeta biologics. Tangles are composed of paired helical filaments of hyperphosphorylated tau protein. Tau-based therapeutics include kinase inhibitors, microtubule stabilizers, and catabolism inducers. Therapeutic strategies for neurodegeneration target multiple mechanisms, including excitotoxicity, mitochondrial dysfunction, oxidative damage, and inflammation or stimulation of neuronal viability. Although not disease modifying, cognition enhancers are important to treat the symptom of dementia. Strategies for cognition enhancement include cholinesterase inhibitors, and other approaches to enhance the signaling of cholinergic and glutamatergic neurons. In summary, plaques, tangles, neurodegeneration and dementia guide the development of multiple therapeutic approaches for AD and are the subject of this review.  相似文献   

7.
SorLA/LR11 is a sorting receptor that regulates the intracellular transport and processing of the amyloid precursor protein (APP) in neurons. SorLA/LR11-mediated binding results in sequestration of APP in the Golgi and in protection from processing into the amyloid-beta peptide (Abeta), the principal component of senile plaques in Alzheimer's disease (AD). To gain insight into the molecular mechanisms governing sorLA and APP interaction, we have dissected the respective protein interacting domains. Using a fluorescence resonance energy transfer (FRET) based assay of protein proximity, we identified binding sites in the extracellular regions of both proteins. Fine mapping by surface plasmon resonance analysis and analytical ultracentrifugation of recombinant APP and sorLA fragments further narrowed down the binding domains to the cluster of complement-type repeats in sorLA that forms a 1:1 stoichiometric complex with the carbohydrate-linked domain of APP. These data shed new light on the molecular determinants of neuronal APP trafficking and processing and on possible targets for intervention with senile plaque formation in patients with AD.  相似文献   

8.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

9.
Díaz-Nido J  Wandosell F  Avila J 《Peptides》2002,23(7):1323-1332
Protein aggregation into dense filamentous inclusions is a characteristic feature of many etiologically diverse neurodegenerative disorders including Alzheimer's disease (AD), spongiform encephalopathies, and tauopathies. Thus, beta-amyloid peptide (Abeta) accumulates within senile amyloid plaques in AD, protease-resistant prion protein constitutes the amyloid deposits in spongiform encephalopathies and tau protein gives rise to neurofibrillary tangles (NFT) both in AD and in tauopathies. Curiously, these abnormal protein inclusions contain, in addition to their major peptide components, some associated sulfated glycosaminoglycans (sGAG). Here we discuss the proposal that the binding of sGAG to aggregate-forming peptides may modify the pathogenic process depending on their subcellular localization.  相似文献   

10.
The main component of Alzheimer's disease (AD) senile plaques is amyloid-beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP). Platelets contain both APP and Abeta and may contribute to the perivascular amyloid deposition seen in AD. However, no data are available concerning the biochemical mechanism(s) involved in their formation and release by these cells. We found that human platelets released APP and Abeta following activation with collagen or arachidonic acid. Inhibition of platelet cyclooxygenase (COX) reduced APP but not Abeta release following those stimuli. In contrast, activation of platelets by thrombin and calcium ionophore caused release of both APP and Abeta in a COX-independent fashion. Ex vivo studies showed that, despite suppression of COX activity, administration of aspirin did not modify Abeta or APP levels in serum or plasma, suggesting that this enzyme plays only a minor role in vivo. We examined the regulation of APP cleavage and release from activated platelets and found that cleavage requires protein kinase C (PKC) activity and is regulated by the intracellular second messengers phosphatidylinositol 2-phosphate and Ca(2+). Our data provide the first evidence that in human platelets COX is a minor component of APP secretion whereas PKC plays a major role in the secretory cleavage of APP. By contrast, Abeta release may represent secretion of preformed peptide and is totally independent of both COX and PKC activity.  相似文献   

11.
The processing of amyloid precursor protein (APP) generates amyloid-beta (Abeta) peptides 1-40 and 1-42. The latter is neurotoxic and its accumulation results in amyloid fibril formation and the generation of senile plaques, the hallmark of Alzheimer's disease (AD). Whilst there has been considerable progress made in understanding the generation of Abeta by alpha-, beta- and gamma-secretase activity on APP, recently enzymes involved in the degradation of Abeta have been identified including neprilysin and insulin-degrading enzyme (IDE). We review the pathways involved in proteolytic processing of APP and discuss the potential implications of aberrant proteolysis on neurodegeneration. It is conceivable that single nucleotide polymorphisms (SNPs) in the regulatory regions of genes in these proteolytic cascades, which alter their expression, could contribute to some of the age-related changes seen in AD.  相似文献   

12.
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.  相似文献   

13.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

14.
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with aging. One important pathologic feature of AD is the formation of extracellular senile plaques in the brain, whose major components are small peptides called beta-amyloid (Abeta) that are derived from beta-amyloid precursor protein (APP) through sequential cleavages by beta-secretase and gamma-secretase. Because of the critical role of Abeta in the pathogenesis of AD, unraveling the cellular and molecular events underlying APP/Abeta metabolism has been and remains, of paramount importance to AD research. In this article we will focus on the regulation of APP metabolism leading to Abeta generation. We will review current knowledge of the secretases (alpha-, beta-, and gamma-secretases) involved in APP processing and various molecular and cellular mechanisms underlying intracellular trafficking of APP, which is a highly regulated process and whose disturbance has direct impacts on the production of Abeta.  相似文献   

15.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

16.
To develop a therapeutic intervention for Alzheimer's disease (AD), it is necessary to clarify the mechanisms underlying the pathogenesis of AD, in which senile plaques, neurofibrillary tangles and neuronal loss in the cerebrum are the central abnormalities. A number of studies have focused on the major component of the senile plaques, which is amyloid-beta (Abeta) and its precursor protein APP, and have investigated the roles of these molecules in the onset, progression and inhibition of AD. For multiple reasons, however, their roles in AD, especially in neuronal death, remain elusive and a unified concept for their roles has not yet been established. Recently, it has been found that APP functions normally as a neuronal surface transmembrane protein. In this article, we review the molecular mechanisms of neuronal cell death by these APP-relevant insults and discuss the functions of APP in regard to intracellular signal transducers, including c-Jun N-terminal kinase. We also revise the roles of Abeta in neuronal death and survival.  相似文献   

17.
The cerebral amyloid deposited in Alzheimer's disease (AD) contains a 4.2 kDa beta amyloid polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). Three beta APP mRNAs encoding proteins of 695, 751, and 770 amino acids have previously been identified. In each of these, there is a single membrane-spanning domain close to the carboxyl-terminus of the beta APP, and the 42 amino acid beta AP sequence extends from within the membrane-spanning domain into the large extracellular region of the beta APP. We raised rabbit antisera to a peptide corresponding to amino acids 45-62 near the amino-terminus of the beta APP. We show that these antisera detect the beta APP by demonstrating that they (i) label a set of approximately 120 kDa membrane-associated proteins in human brain previously detected by antisera to the carboxyl-terminus of beta APP and (ii) label a set of approximately 120 kDa membrane-associated proteins that are selectively overexpressed in cells transfected with a full length beta APP expression construct. The beta APP45-62 antisera specifically stain senile plaques in AD brains. This finding, along with the previous demonstration that antisera to the carboxyl-terminus of the beta APP label senile plaques, indicates that both near amino-terminal and carboxyl-terminal domains of the beta APP are present in senile plaques and suggests that proteolytic processing of the full length beta APP molecule into insoluble amyloid fibrils occurs in a highly localized fashion at the sites of amyloid deposition in AD brains.  相似文献   

18.
Liu F  Su Y  Li B  Zhou Y  Ryder J  Gonzalez-DeWhitt P  May PC  Ni B 《FEBS letters》2003,547(1-3):193-196
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation.  相似文献   

19.
Su Y  Ryder J  Ni B 《FEBS letters》2003,546(2-3):407-410
Alzheimer's disease is characterized pathologically by extracellular amyloid beta protein (Abeta) deposition in the brain. The Abeta peptide, a 39-42 amino acid fragment, is derived from defined proteolysis of the amyloid precursor protein (APP) [Glenner et al., Appl. Pathol. 2 (1984) 357-369; Selkoe, Neuron 6 (1991) 487-498] and is the primary component of senile plaques. Although it is known that intracellular APP is subjected to posttranslational modification, the molecular mechanism that regulates the APP processing is not completely clear. In the present study, we demonstrates that H89, a specific inhibitor for cAMP dependent protein kinase A (PKA), inhibits Abeta production and APP secretion in a dose dependent manner in cells stably transfected with human APP bearing a 'Swedish mutation'. Concurrent with the effect, H89 inhibits C-terminal fragment of the APP. We also found that the PKA inhibitor abolishes the mature form of intracellular APP and accumulates the immature form. Finally, direct administration of H89 into brains of transgenic mice overexpressing human APP shows that the compound inhibits Abeta production in the hippocampal region. Our data suggests that PKA plays an important role in the maturation of APP associated with APP processing.  相似文献   

20.
Estrogen-induced cell signalling in a cellular model of Alzheimer's disease   总被引:6,自引:0,他引:6  
Alzheimer's disease (AD) is characterised by deposition of a 4 kDa amyloid-beta peptide (Abeta) into senile plaques of the affected brain. Abeta is a proteolytic product of the membrane protein, amyloid precursor protein (APP). An alternative cleavage pathway involves alpha-secretase activity and results in secretion of a 100 kDa non-amyloidogenic APP (sAPPalpha) and therefore a potential reduction in Abeta secretion. We have shown that estrogen induces alpha-cleavage and therefore results in the secretion of sAPPalpha. This secretion is signalled via MAP-kinase and PI-3 kinase signal-transduction pathways. These pathways also have the potential to inhibit the activation of glycogen synthase kinase 3beta (GSK), a protein involved in cell death. Therefore, the aim of this work was to further elucidate the estrogen-mediated signaling pathways involved in APP processing, with particular emphasis on GSK activity. By stimulating rat hypothalamic neuronal GT1-7 cells with estradiol, we found that estrogen decreases the activation state of GSK via the MAP kinase pathway. Moreover, the inhibition of GSK activity by LiCl causes enhanced sAPPalpha secretion in a pattern similar to that seen in response to estrogen, suggesting a pivotal role for this deactivation in APP processing. Further, inactivation of GSK by estrogen can be confirmed in an in vivo model. Elucidation of the signaling pathways involved in APP processing may help to understand the pathology of AD and may also prove beneficial in developing therapeutic strategies to combat AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号