首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of coffee (Coffea arabusta) plantlets cultured in vitroas affected by sugar, types of supporting material and number of air exchanges of the vessel was investigated. Single node cuttings of in vitro coffee plantlets were cultured on half strength MS medium with or without 20 g l−1 sucrose. Two types of supporting material, agar and Florialite, and two levels of air exchange expressed by number of air exchanges per vessel, 0.2 and 2.3 h−1, were studied. At the end of a 40-day culture period, fresh weight, shoot length, root length and leaf area of plantlets when cultured on Florialite soaked in sugar-free medium and under the higher number of air exchanges were greater than those in sugar containing medium. Callus was observed at the shoot base of plantlets grown on agar medium containing sucrose. Photosynthetic ability of coffee plantlets in vitro was also significantly increased when grown on sugar-free medium with the high number of air exchanges and Florialite as a supporting material. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
With the objective to develop a practical and effective method of screening potato for drought tolerance, shoot and root growth in microtuber-derived plantlets was studied in vitro in three genotypes with known root mass production under field conditions. Different levels of water-stress were induced using five concentrations of either sorbitol or polyethylene glycol (PEG) in MS medium. Water potential of various media ranged from −0.80 MPa to −2.05 MPa. Water-stress in culture adversely affected plantlet growth, and genotypes differed for their responses. Genotype IWA-1 was less affected than IWA-3 and IWA-5. At the same level of water potential, sorbitol had lower adverse effect than PEG; the latter being sticky. Genotype × sorbitol and genotype × PEG interactions were significant. At 0.2 M sorbitol and 0.003 M PEG, IWA-1 had significantly more roots with higher total root length, root volume, as well as root-dry weight than those of IWA-3 and IWA-5, whereas the latter two genotypes were at par for all these characters. This pattern was similar to the reported pattern of these genotypes for root-dry weight under field conditions. It is concluded that in vitro screening of potato under specific and limited water-stress conditions may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

3.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

4.
Summary Dendrobium candidum Wall. Ex Lindl. is an important species used in the formulation of Shih-hu, a Chinese traditional medicine. An efficient protocol for in vitro propagation of D. candidum using the axenic nodal segments of the shoots, originated from the in vitro germinated seedlings, was developed. The seeds from 120-d-old capsules after pollination were first germinated on half-strength Murashige and Skoog (MS) basal medium supplemented with 30 g l−1 sucrose. After 4 mo., the seedlings were subcultured on a similar medium supplemented with 1 ml l−1 HYPONeX, 80 g l−1 potato homogenate and 2 g l−1 activated charcoal for further growth. Axenic nodal segments excised from 9-mo.-old seedlings were cultured on the medium in the presence of 2 mg l−1 benzyladenine (BA) and 0.1 mg l−1 naphthaleneacetic acid (NAA). After 75 d, 73.2% of the explants gave rise to buds/shoots. The elongated shoots were rooted on the medium containing 0.2 mg l−1 NAA and the plantlets were successfully acclimatized in soil.  相似文献   

5.
In vitro culture ofTanacetum parthenium (L.) Sch.Bip. was initiated from aseptically germinated seedlings. culture was derived from nodal explants of the seedlings on MS medium containing 4.44 μM (1.0 mg 1−1 ) 6-benzylaminopurine (BA) and 0.54 μM (0.1 mg 1−1) of α-naphthaleneacetic acid (NAA). Transformed roots were obtained by infection of the stems of aseptically grown seedlings withAgrobacterium rhizogenes LBA 9402. The parthenolide content in the cultivated plant organs was investigated by RP-HPLC. The production of the compound was strongly influenced by the genotype of the parent plant and ranged from 0.13% to 0.75% dry weight in the shoots of the rooted plantlets grownin vitro. The yield of the compound in multiple shoot cultures ofT.parthenium reached 60% of that found in the shoots of rooted plantlets. In contrast to shoots, only trace amounts of parthenolide could be detected in some clones of transformed roots and the roots of plantlets.  相似文献   

6.
A comparison of in vitro with in vivo flowering in Gentian   总被引:1,自引:0,他引:1  
Young nodal explants of Gentiana triflora Pall. var. axillariflora were cultured in a woody plant medium (WPM) supplemented with B5 vitamins, sucrose (3%) and kinetin (2.0 μM). A novel observation was made in that in vitro flowering occurred following development of the axillary bud of the cultures. A comparison was made between in vitro and in vivo flowers. Although smaller in size, the in vitro flowers were morphologically comparable to the in vivo ones. Flowers from both sources were semi-opened or not opened. The colour of the in vitro flowers was paler than those in vivo. Stigma development was generally poor in both in vitro and in vivo flowers. Pollen viability was over 90% in both types of flowers. About 11% and 34% of pollen from in vitro and in vivo flowers, respectively, germinated on WPM containing 100 g l−1 sucrose solidified with 10 g l−1 agar. Hand pollination of stigma could raise viable seed production in in vivo-flowering plants from 0.3 o/o (i.e. without aided pollination) to 3% but none in in vitro-flowering plants where only seed-like structures, probably unfertilised ovules, were found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary An efficient protocol has been developed for the regeneration of plantlets from leaf explants of witloof chicory (Cichorium intybus L.). Regeneration via callus was obtained on modified Murashige and Skoog semisolid medium (MS) containing 2.0 μM indole-3-acetic acid +5.0 μM 6-furfurylaminopurine (kinetin), and 1000 mgl−1 casein hydrolyzate. At least five or more shoots regenerated from each callus. The shoots were rooted on MS +0.2 μM indole-3-butyric acid. The plantlets thus obtained were successfully established in soil after bardening. Esculin accumulation was recorded in plant tissues at different stages of differentiation in in vitro cultures and compared with in vivo-grown, plants. The esculin accumulation was higher in in vitro plants.  相似文献   

8.
Summary Heterotrophic plantlets obtained by in vitro propagation are biochemically different compared to autotrophic plantlets. When heterotrophic plantlets are transferred to ex vitro conditions, higher irradiance levels are generally applied. Irradiance levels higher than those used in vitro lead to oxidative stress symptoms, that can be counteracted by CO2 concentrations above normal. We analyzed the stability and activity of Rubisco and leaf-soluble sugars and starch contents in chestnut plantlets transferred from in vitro to ex vitro conditions under four treatments obtained by associating two irradiances of 150 (low light, LL) and 300 (high light, HL) μmolm−2s−1, respectively three and six times in vitro irradiance, with two CO2 levels of 350 (low CO2, LCO2) and 700 (high CO2, HCO2) μll−1. In in vitro plantlets it was possible to immunodetect apparent products of degradation of Rubisco large subunit (LSU). In ex vitro plantlets, these degradation products were no longer dtected except under LL associated with LCO2. The decrease in soluble sugars and starch in plantlets under HL HCO2 gave an indication of a faster acquisition of autotrophic characteristics. However, under the same treatment, a down-regulation of Rubisco activity was observed. From the results taken as a whole, two aspects seem to be confirmed: HL HCO2 is more efficient in inducing an autotrophic behavior in chestnut ex vitro plantlets; actively growing systems as ex vitro plantlets reflect the down-regulation of Rubisco by HCO2 without accumulation of carbohydrates.  相似文献   

9.
Multiple shoots of Spilanthes acmella Murr. were induced from nodal buds of in vivo and in vitro seedlings on Murashige and Skoog (MS) medium containing 1.0 mg dm−3 6-benzyladenine (BA) and 0.1 mg dm−3 α-naphthalene-acetic acid (NAA). Adventitious shoots were successfully regenerated from the leaf explants derived from the above mentioned multiple shoots. The efficiency of shoot regeneration was tested in the MS medium containing BA, kinetin, or 2-isopentenyl adenine in combination with NAA, indole-3-acetic acid (IAA), or indole-3-butyric acid (IBA) and gibberellic acid. Maximum number of shoots per explant (20 ± 0.47) was recorded with 3.0 mg dm−3 BA and 1.0 mg dm−3 IAA. An anatomical study confirmed shoot regeneration via direct organogenesis. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing 1.0 mg dm−3 IBA. 95 % of the plantlets were successfully acclimatized and established in soil. The transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

10.
Most commercially grown cacti can be easily propagated by seed and/or cuttings. A group of rare and endangered species does not fit into this category and is therefore a good candidate for in vitro propagation productions as a tool to overcome habitat and plant-destruction. The number of rare and endangered species of Cacti goes into about 100. Many show a low production and germination of seeds and plantlets are prone to damping-off, making the in vitro propagation a feasible alternative for the multiplication and conservation of their germplasm. The aim of the present investigation is to establish a protocol for the in vitro culture and plant regeneration of Notocactus magnificus, the blue cactus, a highly ornamental species, native to Brazil. The surface sterilization of the explants was achieved with immersion for 10 min in sodium hypochlorite solution for either seeds (0.25% v/v) or ribs segments (1% v/v). Callus formation was observed when explants were cultured on MS medium supplemented with sucrose at 2% (w/v), 2,4-dichlorophenoxyacetic acid 0.5 μM, benzylaminopurine 4.4 μM, thiamine HCl 0.4 mg l−1 and i-inositol 100 mg l−1. The regeneration of shoots was carried out on MS medium supplemented with either different concentrations of benzylaminopurine and 1-naphthaleneacetic acid, or kinetin and indole-3-acetic acid. The highest number of shoots occurred when MS medium was supplemented with benzylaminopurine 22.2 μM, sucrose 3% (w/v) and agar 0,6% (w/v). In vitro spontaneous rooting of shoots was observed after eight months under culture on MS medium. Only in vitro rooted shoots developed into normal plants under glasshouse culture conditions. This in vitro protocol should be useful for the conservation as well as mass propagation of Notocactus magnificus.  相似文献   

11.
Summary An efficient and reproducible protocol for mass propagation of Eclipta alba (L.) Hassk, an important medicinal plant, was standardized by culturing shoot tips and nodal segments taken from in vitro raised plants. Maximum shoot proliferation occurred when the explants were cultured on Murashige and Skoog (MS) medium supplemented with 1 mg l−1 benzylaminopurine (BAP). The shoot buds formed were further multiplied and maintained on medium containing BAP (0.5 mgl−1) and gibberellic acid (0.5 mgl−1). Rooting was best achieved on MS medium supplement with 1 mg−1 indole-3-butyric acid. Rooted plantlets attained maturity and flowered normally in the field.  相似文献   

12.
Effects of two ventilation methods (forced and natural) and two photosynthetic photon fluxes (PPF, 150 and 250 μmol m−2 s−1) on the photoautotrophic growth of in vitro cultured coffee (Coffea arabusta) plantlets were investigated. Number of air exchanges was 2.7, 5.9 and 3.9 h−1 for forced low rate, forced high rate and natural ventilation, respectively. Single node cuttings of in vitro cultured coffee plantlets were cultured on Florialite, a mixture of vermiculite and cellulose fibers with high air porosity, emerged in liquid half strength basal MS medium, without sucrose, vitamins and plant growth regulators. The study included 40 days in the in vitro stage and 10 days in the ex vitro stage. Mean fresh and dry weights, leaf area, shoot and root lengths and net photosynthetic rate per plantlet were significantly greater in forced high rate treatments compared with those in natural and forced low rate treatments. PPF had a distinct effect on shoot length suppression and root elongation of coffee plantlets in forced high rate treatments. The control of carbon dioxide concentration inside the culture box according to the plant demand when growing was easy with the forced ventilation method in photoautotrophic micropropagation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Micropropagated grape (Vitis vinifera L.) cv. Arka Neelamani cultures showed a decline in root and shoot growth performance after 6–7 yr of continuous in vitro culture. Indexing the culture medium using nutrient agar or 523 bacteriological medium (Viss et al., 1991) revealed covert bacteria in 75–100% cultures. Testing the tissue from different parts of in vitro plantlets on nutrient agar showed bacteria comprising of six or more morphotypes in 100% of root and collar tissue samples but less frequently in stem segments. The shoot tips had the lowest incidence of bacterial association. The whole shoots treated with NaOCl (4% chlorine) or HgCl2 (0.1%) showed endophytic bacterial survival. Culturing the HgCl2-treated (5 min) shoot tips on antibiotic overlaid medium (1 ml of 50 mg l−1 gentamycin and/or cefazolin) in culture tubes (150×25 mm) for 1 mo. facilitated the cleansing of cultures with 75% recovery of contaminant-free shoots as monitored through indexing for the next 2 yr. Repeated indexing of medium and tissue from various plant parts during the first two to four subculture cycles following antibiotic treatment was instrumental in reliably identifying clean cultures and preventing bacterial re-emergence. Antibiotic incorporation in the medium was detrimental to grape microcuttings. Bacteria-freed cultures showed 80–100% rooting and a high number of plantlets that could be acclimatized. The plants put in the field after 8 yr of active micropropagation showed some juvenile characteristics initially, which disappeared in 6–8 mo., and the pruned shoots showed flowering and bunch development within 1 yr of field planting. This indicated the feasibility of keeping grape plants in vitro for long periods if covert microbes were eliminated.  相似文献   

14.
Summary An efficient protocol for in vitro propagation of an aromatic and medicinal herb Ocimum basilicum L. (sweet basil) through axillary shoot proliferation from nodal explants, collected from field-grown plants, is described. High frequency bud break and maximum number of axillary shoot formation was induced in the nodal explants on Murashige and Skoog (1962) medium (MS) containing N6-benzyladenine (BA). The nodal explants required the presence of BA at a higher concentration (1.0 mg·l−1, 4.4 μM) at the initial stage of bud break; however, further growth and proliferation required transfer to a medium containing BA at a relatively low concentration (0.25 mg·gl−1, 1.1 μM). Gibberellic (GA3) at 0.4 mg·l−1 (1.2 μM) added to the medium along with BA (1.0 mg·l−1, 4.4 μM) markedly enhanced the frequency of bud break. The shoot clumps that were maintained on the proliferating medium for longer durations, developed inflorescences and flowered in vitro. The shoots formed in vitro were rooted on half-strength MS supplemented with 1.0 mg·l−1 (5.0 μM) indole-3-butyric acid (IBA). Rooted plantlets were successfully acclimated in vermi-compost inside a growth chamber and eventually established in soil. All regenerated plants were identical to the donor plants with respect to vegetative and floral morphology.  相似文献   

15.
Summary Plantlets of Capsicum annuum L. ev. Sweet Banana regenerated via somatic embryogenesis from immature zygotic embryos were capable of producing flower, fruit, and seed when cultured in small tissue culture containers. In vitro floral buds were first formed on plantlets that grew on plantlet development medium [agar-gelled Murashige and Skoog (MS) basal medium containing 1 mgl−1 (5.3 μM) α-naphthaleneacetic acid (NAA)] in a growth room at 22°C and continuous illumination. However, floral buds rarely developed further into mature flowers. This problem was overcome using the vented autoclavable plant tissue culture containers. In vitro fruit formation and ripening was observed when liquid half-strength MS basal medium supplemented with 5 μg ml−1 silver thiosulfate, 1 mg l−1 (5.3 μM) NAA, and 3% sucrose was added to the surface of the plantlet development medium. Hand-pollination improved fruit set. Further research in needed to determine why the pepper seeds formed in vitro failed to germinate.  相似文献   

16.
Summary Goldenseal (Hydrastis canadensis L.), a popular native American medicinal plant, is currently listed as endangered or threatened in over one-third of the states in which it is listed. The objective of this study was to develop an in vitro culture protocol for Goldenseal. Excise embryos were grown on Gamborg's B-5 medium with 0,1 or 10 μM gibberellic acid (GA3), and supplemented with 30 gl−1 sucrose and 8 gl−1 agar. Germinated embryos provided explants (leaf and root tissue) that were subsequently cultured on various media with combinations of naphthleneacetic acid (NAA) and benzyladenine (BA). All NAA/BA combinations produced multiple shoots, roots, and callus. Leaf explants cultured on medium with 1∶10 μM NAA:BA and root explants on medium with 1∶1 μM NAA:BA could be successfully used for mieropropagation.  相似文献   

17.
Summary Success has been achieved in developing a complete protocol for mass propagation of Anogeissus pendula and A. latifolia, two important forest species found in India. Seeds cultured on plant growth regulator-free, semisolid Murashige and Skoog (MS) medium germinated within 5–6 wk and formed 4–6-cm long shoots. The shoots multiplied on MS+4.4 μM benzyladenine (BA)+5.7 μM indoleacetic acid (IAA) + casein hydrolysate (100 mgl−1) + ascorbic acid (50 mgl−1) + sucrose (3%) + agar (0.8%). A majority of the genotypes rooted with more than 90% efficiency when 5–6 cm individual shoots were cultured on 1/2MS (only major salts reduced to half strength)+2.3 μM IAA+2.5 μM indolebutyric acid (IBA) + sucrose (3%)+agar (0.8%) for 15 d. Those 10% (approx.) genotypes that did not root well on the above medium could be rooted with ease by increasing the concentration of IAA in the rooting media from 2.3 to 5.7 μM. The in vitro-raised plants were successfully transferred to the soil with a success rate of over 85%. Using this protocol, over 560 000 tissue-cultured plants of these two species have been produced and dispatched to various state forest departments for field trials and routine plantations.  相似文献   

18.
Summary Plant regeneration systems from mesophyll- and cell suspension-derived protoplasts were established in Dianthus acicularis (2n=90), a species with resistance to Burkholderia caryophylli (Psedomonas caryophylli). Protoplasts were isolated from both leaves of in vitro-grown plants and cell suspension cultures established from the calluses originated from leaves of in vitro-grown plants. Protoplasts isolated from both sources showed about the same response to the type and concentration of cytokinins, and gave the highest frequencies of cell division and colony formation in 0.1% (w/v) Gelrite?-solidified Murashige and Skoog (MS) medium supplemented with 0.5M glucose, 1.0mgl−1 (4.53 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5 mg l−1 (2.28 μM) zeatin. Numerous plantlets were regenerated after transfer of the colonies to 0.8% (w/v) agar-solidified half-strength MS medium supplemented with 0.5 mgl−1 (2.28 μM) zeatin. Most plantlets exhibited normal phenotypes, but some showed variations, such as abnormal morphology with reduced chromosome number, precocious flowering, and vigorous growth with a tetraploid chromosome number. Possible mechanisms responsible for the observed somaclonal variation are discussed.  相似文献   

19.
Summary Some native species produce seeds with a low frequency of germination accompanied with a period of dormancy. These features make it difficult to produce new phenotypes through sexual propagation. Maclura tinctoria has been considered an endangered species due to extensive use of its wood and low frequency of seed germination. The objective of the present study is to establish an in vitro propagation system for this species. Organogenic friable callus formation from nodal segments has been obtained using woody plant medium (WPM) supplemented with 10.74 μM 1-naphthaleneacetic acid (NAA)+4.43 μM 6-benzylaminopurine (BA). Results indicate that the highest frequency of shoot formation is observed when WPM supplemented with 4.03 μM NAA+4.43 BA is used. For root formation, the use of WPM medium (pH adjusted to 7.0) supplemented with 23.62 μM indole-3-butyric acid (IBA) and 4.7gl−1 activated charcoal is recommended. For acelimatization, subjecting rooted plantlets to 70%, 50%, and 30% mesh screen, each successively for a period of 7 d, has resulted in 97% plantlet survival.  相似文献   

20.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号