首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Mammalian purple acid phosphatases are highly conserved binuclear metal-containing enzymes produced by osteoclasts, the cells that resorb bone. The enzyme is a target for drug design because there is strong evidence that it is involved in bone resorption. RESULTS: The 1.55 A resolution structure of pig purple acid phosphatase has been solved by multiple isomorphous replacement. The enzyme comprises two sandwiched beta sheets flanked by alpha-helical segments. The molecule shows internal symmetry, with the metal ions bound at the interface between the two halves. CONCLUSIONS: Despite less than 15% sequence identity, the protein fold resembles that of the catalytic domain of plant purple acid phosphatase and some serine/threonine protein phosphatases. The active-site regions of the mammalian and plant purple acid phosphatases differ significantly, however. The internal symmetry suggests that the binuclear centre evolved as a result of the combination of mononuclear ancestors. The structure of the mammalian enzyme provides a basis for antiosteoporotic drug design.  相似文献   

2.
A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

3.
Summary A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

4.
The effect of pH during formalin fixation on acid phosphatases in human tissues was studied. Lysosomal-type acid phosphatase was sensitive to alkaline fixation, being completely inactive after fixation at pH 9.0. Prostatic and tartrate-resistant osteoclastic/macrophagic types were alkaline fixation-resistant, as was an acid phosphatase localized in endothelium, endometrial stromal cells and intestinal nerves. The latter activity was further separable into fluoride- and tartrate-sensitive beta-glycerophosphatase and fluoride-sensitive, tartrate-resistant alpha-naphthyl phosphatase. The activities appeared to represent either different, tightly associated enzymes or separate activity centres of a single enzyme. Alkaline fixation-resistant alpha-naphthyl phosphatase at endothelial, endometrial and neuronal sites was also well demonstrated in unfixed or neutral formalin-fixed sections as tartrate-resistant activity similar to classical tartrate-resistant acid phosphatase, but these phosphatases appear to be antigenically different. Alkaline fixation-resistant acid phosphatase showed a restricted tissue distribution both in endothelium (mainly in vessels of abdominal organs) and at neuronal sites (only in intestinal nerves). Alkaline fixation-resistant acid phosphatase appears to represent a previously unknown or uncharacterized enzyme activity whose chemical properties could not be classified as any previously known type of acid or other phosphatases.  相似文献   

5.
Tartrate-resistant acid phosphatase active on nucleoside di- and triphosphate substrates was isolated from developing rat bone and purified 2500-fold. The enzyme concentration had a purple coloration and activity that was sensitive to reducing agents. Mild reducing agents such as ferrous ion and ascorbic acid caused loss of purple color and increased activity toward substrates severalfold; however, a strong reductant such as dithionite caused loss of both color and activity which were partially restored by addition of ferrous ion and ascorbic acid. Enzyme activity was homogeneous with protein during the final gel permeation steps of chromatography and gave an apparent molecular size of about 40,000 Da. Determination of iron in the most pure preparation revealed the presence of 1.3 atoms of iron per molecule of the tartrate-resistant enzyme E2. Other properties of the purified enzyme include a pI of approximately 9.5 and sensitivity to inhibition by ions of copper, zinc, fluoride, and molybdate. Antibody prepared to the pre-concanavalin A (Con A)-Sepharose purified enzyme reacted with all protein from the Con A step, but it did not react with tartrate-sensitive acid phosphatase from rat bone or with potato acid phosphatase. Purple acid phosphatase from rat bone has many properties that parallel the iron-containing purple acid phosphatases from rat spleen, bovine spleen, and pig uterine secretions.  相似文献   

6.
Mammalian and plant purple acid phosphatases have similar active site structures despite low sequence identity (<20%). Although no bacterial enzyme has been purified, a sequence database search revealed that genes that could encode potential purple acid phosphatases may be restricted to a small number of organisms (i.e. myco- and cyanobacteria). Analysis of their deduced amino acid sequences and predicted secondary structures indicates that the cyanobacterial enzyme is similar to both the mammalian and the recently discovered low-molecular-weight plant purple acid phosphatases, while the mycobacterial enzyme is homologous to the fungal and high-molecular-weight plant purple acid phosphatases. Homology models indicate that both bacterial proteins appear to be similar to mammalian purple acid phosphatases in the immediate vicinity of the active site. It is likely that these enzymes act as Fenton-type catalysts in order to prevent damage caused by reactive oxygen species generated by invaded host cells (M. tuberculosis) or by the light-harvesting complex (Synechocystis sp.).  相似文献   

7.
Summary A tartrate-resistant acid phosphatase activity was detected in the human placenta. This enzyme displayed immunological properties similar to those of the group of purple acid phosphatases that can be demonstrated with a rabbit polyclonal antibody against bovine spleen purple acid phosphatase. The placental enzyme was mainly localized immunohistochemically to neutrophil granulocytes of the maternal blood between the placental villi and within foetal capillaries using the bovine spleen antibody and the commercial monoclonal antibody M1 directed against an antigen found on mature granulocytes. A minor activity was detected in decidual cells and the syncytiotrophoblast. The presence of purple acid phosphatase in placental granulocytes may be related to special immunological conditions of pregnancy.  相似文献   

8.
Tartrate-resistant acid phosphatase (TRAP) is a characteristic constituent of osteoclasts and some mononuclear preosteoclasts and, therefore, used as a histochemical and biochemical marker for osteoclasts and bone resorption. We now report the isolation of a 1397-base pair (bp) full-length TRAP/tartrate-resistant acid ATPase (TrATPase) cDNA clone from a neonatal rat calvaria lambda gt11 cDNA library. The cDNA clone consists of a 92-bp untranslated 5'-flank, an open reading frame of 981 bp and a 324-bp untranslated 3'-poly(A)-containing region. The deduced protein sequence of 327 amino acids contains a putative cleavable signal sequence of 21 amino acids. The mature polypeptide of 306 amino acids has a calculated Mr of 34,350 Da and a pI of 9.18, and it contains two potential N-glycosylation sites and the lysosomal targeting sequence DKRFQ. At the protein level, the sequence displays 89-94% homology to TRAP enzymes from human placenta, beef spleen, and uteroferrin and identity to the N terminus of purified rat bone TRAP/TrATPase. An N-terminal amino acid segment is strikingly homologous to the corresponding region in lysosomal and prostatic acid phosphatases. The cDNA recognized a 1.5-kilobase mRNA in long bones and calvaria, and in vitro translation using, as template, mRNA transcribed from the full-length insert yielded an immunoprecipitated product of 34 kDa. In neonatal rats, TRAP/TrATPase mRNA was highly expressed in skeletal tissues, with much lower (less than 10%) levels detected in spleen, thymus, liver, skin, brain, kidney, brain, lung, and heart. In situ hybridization demonstrated specific labeling of osteoclasts at endostal surfaces and bone trabeculae of long bones. Thus, despite the apparent similarity of this osteoclastic TRAP/TrATPase with type 5, tartrate-resistant and purple, acid phosphatases expressed in other mammalian tissues, this gene appears to be preferentially expressed at skeletal sites.  相似文献   

9.
Summary Localization of acid phosphatase in mammary glands of lactating rats was studied by both biochemical and cytochemical methods. Cytochemically, acid phosphatase activity was detected by using lead citrate as the capture agent for the inorganic phosphate released from p-nitrophenyl phosphate. The activity was predominantly localized in the lumina of the endomembrane system and in the milk that had been secreted into the alveolar lumen. Biochemically, acid phosphatase was present in all the subcellular fractions with higher activities in the membrane-associated fractions. The localization of tartrate-resistant acid phosphatases within the endomembrane system of fully lactating rat mammary tissue suggests a possible role for these enzymes in milk secretory processes.Abbreviations ASMX 3-hydroxy-2-naphthoic acid 2,4-dimethylanilide - DMSO dimethylsulfoxide - DTT dithiothreitol - EDTA ethylenedinitrilo tetra-acetic acid - FGM fat globule membranes - MES 2-(N-morpholino) ethanesulfonic acid - PCMB p-chloromercuribenzoate - p-NPP p-nitrophenyl phosphate  相似文献   

10.
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu-oxo bridge, in contrast to other known purple acid phosphatases in which a mu-hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases.  相似文献   

11.
An acid phosphatase species which was activated by Fe2+ was determined to be partially soluble but mainly particulate in rat spleen. The particulate enzyme could be extracted into 1 M KCl. This enzyme bound to Cibacron Blue-immobilized Sepharose (Blue-Sepharose) and was desorbed by 2 M KCl with a good yield, while the other acid phosphatases in rat spleen did not adsorb on Blue-Sepharose. The enzymes eluted on Blue-Sepharose chromatography of both the soluble and particulate fractions were electrophoretically identical. The enzyme hydrolyzed aryl monophosphates, phosphoproteins, and nucleoside di- and triphosphates. The activity for the three kinds of substrate was similarly activated by Fe2+, ascorbic acid and cysteine, and inhibited by molybdate, Cu2+ and F-. Cibacron Blue inhibited the enzyme competitively with respect to a substrate, p-nitrophenyl phosphate, but kinetic analysis suggested that more than one dye molecule binds to the enzyme. The Blue-Sepharose technique could be applied not only to quantitative separation of acid phosphatases similar to the spleen enzyme from bone and epidermis of rat, but also to that of a tartrate-resistant acid phosphatase from human spleen with Gaucher's disease.  相似文献   

12.
The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like-organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes. A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

13.
Summary The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes.A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

14.
To date, two lysosomal acid phosphatases are known to be expressed in cells of the monocyte/phagocyte lineage: the ubiquitously expressed lysosomal acid phosphatase (LAP) and the tartrate-resistant acid phosphatase-type 5 (Acp5). Deficiency of either acid phosphatase results in relatively mild phenotypes, suggesting that these enzymes may be capable of mutual complementation. This prompted us to generate LAP/Acp5 doubly deficient mice. LAP/Acp5 doubly deficient mice are viable and fertile but display marked alterations in soft and mineralised tissues. They are characterised by a progressive hepatosplenomegaly, gait disturbances and exaggerated foreshortening of long bones. Histologically, these animals are distinguished by an excessive lysosomal storage in macrophages of the liver, spleen, bone marrow, kidney and by altered growth plates. Microscopic analyses showed an accumulation of osteopontin adjacent to actively resorbing osteoclasts of Acp5- and LAP/Acp5-deficient mice. In osteoclasts of phosphatase-deficient mice, vacuoles were frequently found which contained fine filamentous material. The vacuoles in Acp5- and LAP/Acp5 doubly-deficient osteoclasts also contained crystallite-like features, as well as osteopontin, suggesting that Acp5 is important for processing of this protein. This is further supported by biochemical analyses that demonstrate strongly reduced dephosphorylation of osteopontin incubated with LAP/Acp5-deficient bone extracts. Fibroblasts derived from LAP/Acp5 deficient embryos were still able to dephosphorylate mannose 6-phosphate residues of endocytosed arylsulfatase A. We conclude that for several substrates LAP and Acp5 can substitute for each other and that these acid phosphatases are essential for processing of non-collagenous proteins, including osteopontin, by osteoclasts.  相似文献   

15.
Tartrate-resistant acid phosphatase type-5 was purified to apparent homogeneity from human osteoclastomas by sequential chromatography on CM-Sepharose, Phenyl-Sepharose, concanavalin A-Sepharose, FPLC Superose-12, and FPLC Mono-S. The purification over the original tissue extract was 1167-fold, with a yield of 16%. An identity in the N-terminal amino acid sequence and Mr was found between this enzyme and two type-5 tartrate-resistant acid phosphatases isolated from hairy cell leukemia spleen. However, they appeared to be different as assessed by amino acid composition. In contrast to a previous report, no evidence was found for two subunits of the tartrate-resistant acid phosphatase.  相似文献   

16.
Sopina VA 《Tsitologiia》2001,43(7):701-707
Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.  相似文献   

17.
The immunological cross-reactivity of heterogeneous acid phosphatase isozymes from different human tissues has been studied using monospecific antisera prepared against four homogeneous acid phosphatases. The enzyme characterized as tartrate-inhibitable, prostatic acid phosphatase is also found to be present in leukocytes, kidney, spleen, and placenta. The tartrate-inhibitable (liver) lysosomal enzyme is also found in kidney, fibroblasts, brain, placenta, and spleen, but it is not detectable in erythrocytes and prostate. In several tissues, 10–20% of the tartrate-inhibitable enzyme is not precipitated by any of the antisera used; an exceptionally high amount (54%) of such an enzyme is present in human brain. Antiserum against a low molecular weight tartrate-resistant liver enzyme (14 kDa) does not cross-react with the erythrocyte enzyme. (10–20 kDa). All other tissues except placenta, prostate, and fibroblast cells show a cross-reactivity with the 14-kDa acid phosphatase antiserum. Thus, the low molecular weight human liver acid phosphatase is distinct from the erythrocyte enzyme, and there are also at least three different tartrate-inhibitable acid phosphatases in human tissues. Chromosomal assignments have been made for only two of the (at least) five acid phosphatases that are present in adult human tissues.This study was supported by DHHS Research Grant GM 27003 from the U.S. National Institute of General Medical Sciences and by Grant SFB-104 from the Deutsche Forschungsgemeinschaft.  相似文献   

18.
Tartrate-resistant acid phosphatase (TRAP) is a mammalian di-iron- containing enzyme that belongs to the family of purple acid phosphatases (PAP). It is highly expressed in a limited number of tissues, predominantly in bone-resorbing osteoclasts and in macrophages of spleen. We have determined the crystal structure of rat TRAP in complex with a phosphate ion to 2.7 A resolution. The fold resembles that of the catalytic domain of kidney bean purple acid phosphatase (KBPAP), although the sequence similarity is limited to the active site residues. A surface loop near the active site is absent due to proteolysis, leaving the active-site easily accessible from the surrounding solvent. This, we believe, gives a structural explanation for the observed proteolytic activation of TRAP. The current structure was determined at a relatively high pH and without any external reducing agents. It is likely that it represents an oxidized and therefore catalytically inactive form of the enzyme.  相似文献   

19.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

20.
Low phosphorous availability, a common condition of many soils, is known to stimulate phosphatase activity in plants; however, the molecular details of this response remain mostly unknown. We purified and sequenced the N-terminal region of a phosphate starvation induced acid phosphatase (AtACP5) from Arabidopsis thaliana, and cloned its cDNA and the corresponding genomic DNA. The nucleotide sequence of the cDNA predicted that AtACP5 is synthesised as a 338 amino acid-long precursor with a signal peptide. AtACP5 was found to be related to known purple acid phosphatases, especially to mammal type 5 acid phosphatases. Other similarities with purple acid phosphatases, which contain a dinuclear metal centre, include the conservation of all residues involved in metal ligand binding and resistance to tartrate inhibition. In addition, AtACP5, like other type 5 acid phosphatases, displayed peroxidation activity. Northern hybridisation experiments, as well as in situ glucuronidase (GUS) activity assays on transgenic plants harbouring AtACP5:GUS translational fusions, showed that AtACP5 is not only responsive to phosphate starvation but also to ABA and salt stress. It is also expressed in senescent leaves and during oxidative stress induced by H2O2, but not by paraquat or salicylic acid. Given its bifunctionality, as it displays both phosphatase and peroxidation activity, we propose that AtACP5 could be involved in phosphate mobilisation and in the metabolism of reactive oxygen species in stressed or senescent parts of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号