首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteolytic cleavage of a limited number of cellular proteins is a central biochemical feature of apoptosis. Aspartate-specific cysteine proteases, the so-called caspases, are the main enzymes involved in this process. At least ten homologues of interleukin-1 converting enzyme (ICE), the first described human caspase, have been identified so far. The purified active proteins are heterodimers with a long and a short subunit derived from a common inactive precursor. Crystallized ICE has an original tetrameric structure. The various caspases tend to show high degrees of homology around the active site Cys. Proteolysis by caspases minimally requires a tetrapeptide substrate in which Asp is an absolute requirement in P1 position, the P4 substrate residue is unique to each homologue, and much more widespread amino acid substitution is observed in P2 and P3. Caspase activation might involve a proteolytic cascade similar to that of the coagulation cascade but the molecular ordering of these proteases in vivo remains to be established clearly. Calpains, serine proteases, granzymes and the proteasome–ubiquitin pathway of protein degradation are other proteolytic pathways that have been suggested to play a role in apoptosis. Substrate proteins can be either activated or degraded during cell death and the consequences of their cleavage remains mostly ill-understood. Nevertheless, the recent demonstration that protease inhibitors can rescue mice undergoing acute liver destruction indicates the accuracy of therapeutic strategies aiming to inhibit cell death-associated proteolysis.  相似文献   

2.
Anin vitrosystem has been employed to study the apoptotic mechanisms in the AK-5 tumor which is a spontaneously regressing rat histiocytoma. Cytosolic extracts of tumor cells primed for apoptosis using dexamethasone and immune serum from tumor-regressing animals were able to induce apoptosis in intact nuclei and reproduce the classical morphological and biochemical features typical of apoptotic cells. The cleavage of lamin A and PARP to signature fragments by these extracts and the inhibition of the same using peptide inhibitors signify the pivotal role of ICE and ICE-related proteases in apoptosis. Lamin A cleavage was insensitive to YVAD but PARP cleavage was blocked by both YVAD and DEVD. Cell extracts derived from cells overexpressing theBcl-2gene andNedd-2antisense gene, respectively, failed to induce apoptosis in exogenously added nuclei, suggesting thatBcl-2gene product is downregulating a key event in apoptotic cascade. The study also demonstrates the coherent action of different ICE-related proteases in apoptosis and their functional redundancy. This system may prove useful for analyzing complex molecular mechanisms underlying apoptosis in tumor cells.  相似文献   

3.
Apoptosis is an evolutionarily conserved ‘suicide’ programme present in all metazoan cells. Despite its highly conserved nature, it is only recently that any of the molecular mechanisms underlying apoptosis have been identified. Several lines of reasoning indicate that apoptosis and cell proliferation coincide to some degree: many oncogenes that promote cell cycle progression also induce apoptosis; damage to the cell cycle or to DNA integrity is a potent trigger of apoptosis; and the key tumour suppressor proteins, p105rb and p53, exert direct effects both on cell viability and on cell cycle progression. There is less evidence, however, to indicate that apoptosis and the cell cycle share common molecular mechanisms. Moreover, the interleukin-1β converting enzyme (ICE) family of cysteine proteases is now known to play a key role in apoptosis but has no discernible role in the cell cycle, arguing that the two processes are discrete.  相似文献   

4.
5.
Molecular chaperones are known to facilitate cellular protein folding. They bind non-native proteins and orchestrate the folding process in conjunction with regulatory cofactors that modulate the affinity of the chaperone for its substrate. However, not every attempt to fold a protein is successful and chaperones can direct misfolded proteins to the cellular degradation machinery for destruction. Protein quality control thus appears to involve close cooperation between molecular chaperones and energy-dependent proteases. Molecular mechanisms underlying this interplay have been largely enigmatic so far. Here we present a novel concept for the regulation of the eukaryotic Hsp70 and Hsp90 chaperone systems during protein folding and protein degradation.  相似文献   

6.
Apoptosis in prostate carcinogenesis   总被引:7,自引:0,他引:7  
Development of effective therapeutic modalities for the treatment of human cancer relies heavily upon understanding the molecular alterations that result in initiation and progression of the tumorigenic process. Many of the molecular changes identified in human prostate tumorigenesis so far play key roles in apoptosis regulation. Apoptosis represents a universal and exquisitely efficient cellular suicide pathway. Since the therapeutic goal is to trigger tumor-selective apoptotic cell death (without clinically significant effects on the host), elucidation of the mechanisms underlying apoptosis deregulation will lead to the identification of specific cellular components for targeting therapeutic interventions. As our understanding of its vital role in the development and growth of the prostate gland has expanded, numerous genes that encode apoptotic regulators have been identified that are severely impaired in prostate cancer cells. In addition, the expression of apoptotic modulators within prostatic tumors appears to correlate with tumor sensitivity to traditional therapies such as hormonal ablation and radiotherapy. No strict correlation between apoptosis induction and a patient's long-term prognosis has emerged, perhaps due to the fact that the ability to achieve initial remission alone does not adequately predict long-term outcome. This review will encompass the known molecular changes intimately involved in the apoptotic pathway which have potential prognostic value in disease progression, as well as therapeutic significance in the enhancement of the apoptotic response to novel and established treatment strategies for the treatment of androgen-dependent and androgen-independent prostatic tumors. The main focus will be on the role of the transforming growth factor-beta (TGF-beta) signaling pathway, bcl-2 and the bcl-2 family members, the caspase cascade (apoptosis executioners), and the Fas pathway in induction and regulation of apoptosis following therapeutic stimuli for the management of advanced prostate cancer.  相似文献   

7.
Targeting TRAIL receptors with either recombinant TRAIL or agonistic DR4- or DR5-specific antibodies has been considered a promising treatment for cancer, particularly due to the preferential apoptotic susceptibility of tumor cells over normal cells to TRAIL. However, the realization that many tumors are unresponsive to TRAIL treatment has stimulated interest in identifying apoptotic agents that when used in combination with TRAIL can sensitize tumor cells to TRAIL-mediated apoptosis. Our studies suggest that various apoptosis defects that block TRAIL-mediated cell death at different points along the apoptotic signaling pathway shift the signaling cascade from default apoptosis toward cytoprotective autophagy. We also obtained evidence that inhibition of such a TRAIL-mediated autophagic response by specific knockdown of autophagic genes initiates an effective mitochondrial apoptotic response that is caspase-8-dependent. Currently, the molecular mechanisms linking disabled autophagy to mitochondrial apoptosis are not known. Our analysis of the molecular mechanisms involved in the shift from protective autophagy to apoptosis in response to TRAIL sheds new light on the negative regulation of apoptosis by the autophagic process and by some of its individual components.  相似文献   

8.
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.  相似文献   

9.
Programmed cell death leading to apoptosis is essential for normal development and homeostasis in plants and throughout the animal kingdom. Although there are differences in apoptotic mechanisms between lower animals and vertebrates, crucial biochemical components of the programmed cell death pathways remained remarkably conserved throughout evolution. Despite decades of studies on the neurobiology and development of mollusks, comparatively little is known about the mechanisms of apoptosis in this phylum. In this review, an attempt is made to summarize data obtained on mollusks so far, and to discuss the molecular mechanisms, the functional and ecological significance of apoptosis and the advantages of snail preparations as tools for programmed cell death research. A definitive comparison of the data obtained on mollusks with those obtained on the more widely studied vertebrates, will contribute to the better understanding of the apoptotic process in general and of its evolutionary development.  相似文献   

10.
Normal epithelial cells undergo apoptosis if integrinmediated matrix contacts are lost, in a process termed 'anoikis'. Anoikis prevents shed epithelial cells from colonizing elsewhere, and is thus essential for maintaining appropriate tissue organisation. Aberrant oncogenes or tumor suppressor genes can cause resistance to anoikis, thereby contributing substantially to malignancy. Apoptosis is mediated by a well-ordered signaling cascade, which involves activation of intracellular proteases known as caspases. However, the mechanism by which the caspase cascade is initiated following cell-matrix detachment is unknown. We have hypothesized that death receptor activation might be involved in anoikis. To test this hypothesis, we developed a transient assay for anoikis and used it to assay the effects of proteins that block the function of domains found within death receptors known as death domains. In this assay, silencer of death domains (SODD) and dominant-negative FAS-associated death domain protein (FADD) efficiently inhibited anoikis in Madin-Darby canine kidney (MDCK) cells. The protective activity of SODD required its BAG domain, which interacts with the heat shock proteins hsp70 and hsc70, and inhibits the chaperone activity of the latter. Both caspase 8, which physically associates with death receptors, and cleavage of the caspase-8 substrate BID, were activated by cell-matrix detachment. These findings indicate a role for death receptors or proteins with related death domains in triggering anoikis.  相似文献   

11.
Expression of proteases in heterologous hosts remains an ambitious challenge due to severe problems associated with digestion of host proteins. On the other hand, proteases are broadly used in industrial applications and resemble promising drug candidates. Bromelain is an herbal drug that is medicinally used for treatment of oedematous swellings and inflammatory conditions and consists in large part of proteolytic enzymes. Even though various experiments underline the requirement of active cysteine proteases for biological activity, so far no investigation succeeded to clearly clarify the pharmacological mode of action of bromelain. The potential role of proteases themselves and other molecules of this multi‐component extract currently remain largely unknown or ill defined. Here, we set out to express several bromelain cysteine proteases as well as a bromelain inhibitor molecule in order to gain defined molecular entities for subsequent studies. After cloning the genes from its natural source Ananas comosus (pineapple plant) into Pichia pastoris and subsequent fermentation and purification, we obtained active protease and inhibitor molecules which were subsequently biochemically characterized. Employing purified bromelain fractions paves the way for further elucidation of pharmacological activities of this natural product. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:54–65, 2017  相似文献   

12.
Many proteases are known to be involved in apoptosis. Among them, interleukin-1beta converting enzyme (ICE) and its family proteases, which are called caspases, play critical roles in the execution stage of apoptosis. We previously reported that a proteasome-inhibitor, benzyloxycarbonyl Leu-Leu-leucinal (ZLLLal), induced apoptosis in MOLT-4 cells. In the present study, in order to analyze the detailed mechanism of ZLLLal-induced apoptosis, we examined the effect of a caspase-inhibitor, acetyl(Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (AcYVADcmk), on ZLLLal-induced apoptosis in the cells. Agarose gel electrophoresis revealed that low concentrations of AcYVADcmk efficiently suppressed apoptotic DNA fragmentation. However, the cells presented morphology different from normal, apoptotic or necrotic cells, although DNA fragmentation was suppressed. The same examination was performed on the cells with anti-Fas antibody-induced apoptosis, and the same results were obtained. Some cells with a similar morphology were found even without the caspase-inhibitor in the early stage of anti-Fas antibody-induced physiological apoptosis. In addition, apoptotic cascade was reactivated by washing out the caspase inhibitor from the DNA degradation-suppressed cells. Therefore, this newly found morphological feature shows the presence of a step prior to caspase activation in the cells, and this is the first report presenting the pre-caspase-activated step in the apoptotic cascade.  相似文献   

13.
In 2001, with‐no‐lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress‐responsive gene 1 (OSR1), Ste20‐related proline‐alanine‐rich kinase (SPAK), and thiazide‐sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK–OSR1/SPAK–NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII‐causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch‐like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.  相似文献   

14.
Apoptosis can be mediated by mechanisms other than the traditional caspase-mediated cleavage cascade. There is growing recognition that alternative proteolytic enzymes such as the lysosomal cathepsin proteases can initiate or propagate proapoptotic signals, but it is currently unclear how cathepsins achieve these actions. Recent in vitro evidence suggests that cathepsins cleave the proapoptotic Bcl-2 family member Bid, thereby activating it and allowing it to induce the mitochondrial release of cytochrome c and subsequent apoptosis. We have tested this hypothesis in vivo by breeding mice that lack cathepsin inhibition (cystatin B-deficient mice) to Bid-deficient mice, to determine whether the apoptosis caused by cathepsins is dependent on Bid signaling. We found that cathepsins are still able to promote apoptosis even in the absence of Bid, indicating that these proteases mediate apoptosis via a different pathway, or that some other molecule can functionally substitute for Bid in this system.  相似文献   

15.
16.
Mechanism of fenretinide (4-HPR)-induced cell death   总被引:7,自引:0,他引:7  
4-HPR (fenretinide) is a synthetic analog of retinoic acid (RA) whose potential as a chemopreventative agent has gained support from in vitro and animal experiments and in limited clinical trials. Comparative analyses of cellular, biochemical, and molecular properties of fenretinide with RA using various tissue culture cells reveal that a key distinction between these two retinoids lies in the ability of fenretinide to induce programmed cell death, also known as apoptosis. Here we review the composite evidence for induction of apoptosis in fenretinide-treated cells. Assays used to validate apoptosis in various cell types are also summarized. Apoptosis in response to fenretinide primarily occurs by a receptor-independent mechanism, which is accompanied by increases in signaling molecules, e.g., ceramide, and cysteine-dependent aspartate-directed proteases, termed caspases, including execution caspase-3. Both caspase-3 inhibitor DEVD-CHO and ceramide synthase inhibitor fumonisin B1 (FB1) block fenretinide-induced apoptosis. Increase in caspase-3 appears to result from fenretinide-elicited stabilization of procaspase-3 zymogen. We also review apoptotic regulatory proteins such as inhibitor of apoptosis (IAPs) and second mitochondria-derived activator of caspase (SMACs) that participate in the coordinate control of caspase activities. The existence of a large number of proteins capable of modulating apoptosis via activation or inhibition of caspases, coupled with the fact that both the initiation and execution phases of apoptosis utilize pre-existing zymogens, which, once set in motion, culminates in an irreversible apoptotic cascade, raise the possibility that the on/off switch of apoptosis is linked to an intricate intracellular regulatory network, capable of responding to external stimuli such as fenretinide. This network functions to provide checks/balances of the need for apoptosis as well as to minimize and prevent untimely errors in apoptosis. We suggest that dynamic and coordinated regulation of apoptosis by such a hypothetical network in vivo may involve co-localization of pro- and anti-apoptotic proteins and their respective activators/inhibitors in a macromolecular modular unit which we propose to be named caspasomes. Fenretinide also induces apoptosis by elevating reactive oxygen species (ROS), unrelated to changes in ceramide-caspases. Thus multiple, distinct pathways contribute to the induction of apoptosis by fenretinide.  相似文献   

17.
Alberio T  Lopiano L  Fasano M 《The FEBS journal》2012,279(7):1146-1155
Cellular models are instrumental in dissecting a complex pathological process into simpler molecular events. Parkinson's disease is multifactorial and clinically heterogeneous; the aetiology of the sporadic (and most common) form is still unclear and only a few molecular mechanisms have been clarified so far in the neurodegenerative cascade. In such a multifaceted picture, it is particularly important to identify experimental models that simplify the study of the different networks of proteins/genes involved. Cellular models that reproduce some of the features of the neurons that degenerate in Parkinson's disease have contributed to many advances in our comprehension of the pathogenic flow of the disease. In particular, the pivotal biochemical pathways (i.e. apoptosis and oxidative stress, mitochondrial impairment and dysfunctional mitophagy, unfolded protein stress and improper removal of misfolded proteins) have been widely explored in cell lines, challenged with toxic insults or genetically modified. The central role of α-synuclein has generated many models aiming to elucidate its contribution to the dysregulation of various cellular processes. In conclusion, classical cellular models appear to be the correct choice for preliminary studies on the molecular action of new drugs or potential toxins and for understanding the role of single genetic factors. Moreover, the availability of novel cellular systems, such as cybrids or induced pluripotent stem cells, offers the chance to exploit the advantages of an in vitro investigation, although mirroring more closely the cell population being affected.  相似文献   

18.
PNO1 (partner of Nob1) was known as a RNA‐binding protein in humans, and its ortholog PNO1 was reported to participate ribosome and proteasome biogenesis in yeasts. Yet there have been few studies about its functions in mammalian cells, and so far its role in human cells has never been reported, especially in urinary bladder cancer (UBC).We interrogated the cellular functions and clinical significance of PNO1 in, and its molecular mechanism through microarrays and bioinformatics analysis. Our findings support that PNO1 participates in promoting proliferation and colonogenesis, while reducing apoptosis of UBC cells, and is also predicted to be associated with the migration and metastasis of UBC PNO1 knockdown (KD) attenuated the tumorigenesis ability of UBC in mouse. PNO1 KD led to the altered expression of 1543 genes that are involved in a number of signalling pathways, biological functions and regulation networks. CD44, PTGS2, cyclin D1, CDK1, IL‐8, FRA1, as well as mTOR, p70 S6 kinase, p38 and Caspase‐3 proteins were all down‐regulated in PNO1 KD cells, suggesting the involvement of PNO1 in inflammatory responses, cell cycle regulation, chemotaxis, cell growth and proliferation, apoptosis, cell migration and invasiveness. This study will enhance our understanding of the molecular mechanism of UBC and may eventually provide novel targets for individualized cancer therapy.  相似文献   

19.
Arabidopsis thaliana proteome contains 667 proteases; some tens of them are chloroplast-targeted proteins, encoded by genes orthologous to the ones coding for bacterial proteolytic enzymes. It is thought that chloroplast proteases are involved in chloroplasts' proteins turnover and quality control (maturation of nucleus-encoded proteins and removal of nonfunctional ones). Some ATP-dependent chloroplast proteases belonging to FtsH family (especially FtsH2 and FtsH5) are considered to be involved in numerous aspects of chloroplast and whole plant maintenance under non-stressing as well as stressing conditions. This notion is supported by severe phenotype appearance of mutants deficient in these proteases. In contrast to seemingly high physiological importance of chloroplast members of FtsH protease family, only a few individual proteins have been identified so far as their physiological targets (i.e. Lhcb1, Lhcb3, PsbA and Rieske protein). Our knowledge regarding structure and molecular mechanisms of these enzymes' action is limited when compared with what is known about FtsHs of bacterial origin. Equally limited is the knowledge about ATP-dependent Lon4 protease being the single known chloroplast-targeted ortholog of Lon protease of Escherichia coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号