首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Werner syndrome helicase/3′-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was observed for DNA single- and double-strand break formation in response to topotecan. Topotecan induced DNA single-strand breaks 6 h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I–DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors.  相似文献   

2.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

3.
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.  相似文献   

4.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

5.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

6.
DNA (deoxyribonucleic acid) signals that induce the G2 checkpoint response were examined using proliferative secondary cultures of diploid human fibroblasts. Treatments that generated DNA double-strand breaks (DSBs) directly were effective inducers of checkpoint response, generally producing >80% inhibition of mitosis (G2 delay) and the kinase activity of M-phase-promoting factor within 2 h of treatment. Effective inducers of G2 checkpoint response included γ-irradiation and the cancer chemotherapeutic drugs, bleomycin and etoposide. Treatments that produced DNA single-strand breaks, directly or indirectly through nucleotide excision repair, were not effective inducers of G2 delay. Ineffective treatments included incubation with camptothecin, an inhibitor of topoisomerase I (topo I), and irradiation with sublethal fluences of UVC, followed by incubation with aphidicolin. Transient severe inhibition of DNA synthesis with aphidicolin did not affect mitosis substantially, suggesting that the replication arrest input to the G2 checkpoint required more than brief inhibition of DNA synthesis. In contrast, moderate camptothecin-induced inhibition of DNA synthesis was associated with a strong inhibition of mitosis that developed 4–12 h after drug treatment. This result suggested that G2 delay was not expressed until the cells that were in S-phase at the time of treatment with camptothecin proceeded into G2. DNA damage was not necessary for induction of mitotic delay. An inhibitor of topoisomerase II (topo II), ICRF-193, which inhibits chromatid decatenation in G2 cells without damaging DNA, induced a severe inhibition of mitosis and M-phase-promoting factor kinase activity. The results suggest that DNA double-strand breaks and insufficiency of chromatid decatenation effectively induce the G2 checkpoint response, but DNA single-strand breaks do not.  相似文献   

7.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

8.
9.
Fluorescein mercuric acetate causes the unwinding of DNA and binds to the separated bases. This unwinding process can be followed by measuring absorption changes of this reagent. For untreated calf thymus DNA, the initial rate was very slow, and the shape of the kinetic curve was sigmoidal. When double-strand breaks of DNA were produced by DNase II treatment or sonication, the initial rate increased and the sigmoidal character disappeared. The initial rate was shown to be proportional to the concentration of helix ends. From this relation the rate of unwinding was estimated to be 2.0 base pairs/sec at 1.0 × 10?5M fluorescein mercuric acetate and 25°C. DNase I treatment, which produces single-strand breaks and a smaller number of double-strand breaks, also increased the initial rate. However, this increase was due only to the double-strand breaks, that is, single-strand breaks had no significant effect on the initial rate. Also, uv irradiation increased the initial rate linearly with uv dose, at least up to 2 × 105 erg/mm2, suggesting that this increase is due to photoproducts other than usual pyrimidine dimers. We discuss the usefulness of this kinetic method in structural studies of DNA.  相似文献   

10.
Induction and repair of double- and single-strand DNA breaks have been measured after decays of 125I and 3H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-(125I)iodo-2'-deoxyuridine or with (methyl-3H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10(-14) (double-strand breaks) and 2.82 x 10(-12) (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all.  相似文献   

11.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

12.
Mutants of Diplococcus pneumoniae that lack a membrane-localized DNAase are defective in transformation because entry of DNA into the cell is blocked. Such mutants still bind DNA on the outside of the cell. The bound DNA is double-stranded and its double-stranded molecular weight is unchanged. Its sedimentation behavior in alkali, however, shows that it has undergone single-strand breakage. The breaks are located randomly in both strands of the bound DNA at a mean separation of 2 × 106 daltons of single-stranded DNA. Both binding and single-strand breakage occur in the presence of EDTA. Single-strand breaks are similarly formed on binding of DNA to normally transformable cells in the presence of EDTA. The single-strand breaks appear to be a consequence of attachment. DNA may be bound to the cell surface at the point of breakage.A mutant that is partially blocked in entry also binds DNA mainly on the outside of the cell. In the presence of EDTA, DNA bound by this mutant undergoes only single-strand breaks. In the absence of EDTA, however, double-strand breaks occur, apparently as a result of the initiation of entry. It is possible that the double-strand breaks arise from additional single-strand breaks opposite those that occurred on binding. The double-strand breaks presumably result from action of the membrane DNAase as it begins to release oligonucleotides from one strand segment while drawing the complementary strand segment into the cell.  相似文献   

13.
DNA intercalating agents such as 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) have previously been found to induce in mammalian cells the formation of protein-associated DNA single- and double-strand breaks. In the current work, an activity characterized by the production of DNA-protein links associated with DNA strand breaks and by stimulation by m-AMSA was isolated from L1210 cell nuclei and was shown to be due to topoisomerase II. Nuclei were extracted with 0.35 M NaCl, and the extract was fractionated by gel filtration, DNA-cellulose chromatography, and glycerol gradient centrifugation. A rapid filter binding assay was devised to monitor the fractionation procedure on the basis of DNA-protein linking activity. The active DNA-cellulose fraction contained both topoisomerase I and topoisomerase II whereas the glycerol gradient purified material contained only topoisomerase II activity. The properties of the active material were studied at both stages of purification. m-AMSA enhanced the formation of complexes between purified topoisomerase II and SV40 DNA in which the DNA sustained a single- or double-strand cut and the enzyme was covalently linked to the 5' terminus of the DNA. This action was further enhanced by ATP, as well as by nonhydrolyzable ATP analogues. m-AMSA inhibited the topoisomerization and catenation reactions of topoisomerase II, probably because of trapping of the enzyme-DNA complexes. The activity showed a dependence on the type of DNA intercalators used, analogous to what was previously observed in intact cells. m-AMSA had no effect on topoisomerase I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

15.
To elucidate the mechanism of the cell killing activity of neocarzinostatin on mammalian cells, the drug-induced damage of DNA and its repair were examined. Very low doses of neocarzinostatin, at which high survival of cells was observed, clearly produced single-strand breaks of DNA and decomposition of the 'DNA complex', but these damages appeared to be repaired almost completely. At higher doses of neocarzinostatin, single-strand breaks were repaired to a considerable extent while double-strand breaks seemed not to be repaired. The number of non-repairable single-strand breaks was about twice that of double-strand breaks. This implies that single-strand breaks are repaired except for those constituting double-strand breaks. Although at low levels of neocarzinostatin repair of double-strand breaks may occur, the correlation existing between the colony-forming ability of cells treated with neocarzinostatin and non-repairable DNA breakage suggests that production of a small number of critical non-repairable double-strand breaks per cell may be responsible for the cell killing activity of the drug.  相似文献   

16.
A method is described for measuring the average number of nuclease-induced single- and double-strand breaks per DNA molecule. The procedure involves measuring the weight-average molecular weight of DNase I-digested DNA under neutral and alkaline conditions. A statistical equation is used to calculate the number of breaks per single- or double-stranded DNA molecule from the respective weight-average molecular weights. Enzymatic incorporation of32P into the 5′-OH ends of DNase I-induced breaks gave an independent measurement of the number of breaks per DNA molecule. Results obtained by the two different methods were in good agreement. In agreement with earlier reports we find that magnesium-activated DNase catalyzes a high frequency of single-strand breaks in DNA. The frequency of double-strand breaks is low, but significantly higher than can be explained by random accumulation of single-strand breaks. Our data suggest that the frequency of double-strand scission is affected by DNase-metal ion interactions.  相似文献   

17.
When aqueous DNA solution was irradiated with 1.2 MHz continuous ultrasound in the presence of cysteamine, the number of ultrasound-induced double-strand breaks of DNA was not influenced, but the number of ultrasound-induced single-strand breaks of DNA was reduced to about one-fifth that of the irradiated control. When the effect of cysteamine on the template activity of the ultrasound-irradiated DNA was investigated, the cysteamine was found to exert a leveling effect on the linear decrease of the template activity against ultrasonic intensity. Since cysteamine was known as an effective radical scavenger, the results of the experiment were regarded to suggest that (1) the double-strand breaks were exclusively induced by the mechanical effect of ultrasound, (2) the majority of single-strand breaks were produced by water radicals arising from cavitation, (3) the initial part in the decrease of the template activity was due to the double-strand breaks arising from mechanical effect, and (4) the further decrease of the template activity depended mainly on the single-strand breaks arising from water radicals.  相似文献   

18.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

20.
Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIalpha (Top3alpha) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3alpha. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (gamma-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3alpha, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with gamma-H2AX but not with Top3alpha or PML. Thus, BLM appears to dissociate from Top3alpha and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in gamma-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号