共查询到20条相似文献,搜索用时 0 毫秒
1.
James C. Campbell Jeong Joo Kim Kevin Y. Li Gilbert Y. Huang Albert S. Reger Shinya Matsuda Banumathi Sankaran Todd M. Link Keizo Yuasa John E. Ladbury Darren E. Casteel Choel Kim 《The Journal of biological chemistry》2016,291(11):5623-5633
Membrane-bound cGMP-dependent protein kinase (PKG) II is a key regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKG II binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II. 相似文献
2.
James Sinnett-Smith Rodrigo Jacamo Robert Kui YunZu M. Wang Steven H. Young Osvaldo Rey Richard T. Waldron Enrique Rozengurt 《The Journal of biological chemistry》2009,284(20):13434-13445
Rapid protein kinase D (PKD) activation and phosphorylation via protein
kinase C (PKC) have been extensively documented in many cell types cells
stimulated by multiple stimuli. In contrast, little is known about the role
and mechanism(s) of a recently identified sustained phase of PKD activation in
response to G protein-coupled receptor agonists. To elucidate the role of
biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in
these cells potently enhanced duration of ERK activation and DNA synthesis in
response to Gq-coupled receptor agonists. Cell treatment with the
preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD
activation induced by bombesin stimulation for <15 min but did not prevent
PKD catalytic activation induced by bombesin stimulation for longer times
(>60 min). The existence of sequential PKC-dependent and PKC-independent
PKD activation was demonstrated in 3T3 cells stimulated with various
concentrations of bombesin (0.3–10 nm) or with vasopressin, a
different Gq-coupled receptor agonist. To gain insight into the
mechanisms involved, we determined the phosphorylation state of the activation
loop residues Ser744 and Ser748. Transphosphorylation
targeted Ser744, whereas autophosphorylation was the predominant
mechanism for Ser748 in cells stimulated with Gq-coupled
receptor agonists. We next determined which phase of PKD activation is
responsible for promoting enhanced ERK activation and DNA synthesis in
response to Gq-coupled receptor agonists. We show, for the first
time, that the PKC-independent phase of PKD activation mediates prolonged ERK
signaling and progression to DNA synthesis in response to bombesin or
vasopressin through a pathway that requires epidermal growth factor
receptor-tyrosine kinase activity. Thus, our results identify a novel
mechanism of Gq-coupled receptor-induced mitogenesis mediated by
sustained PKD activation through a PKC-independent pathway.The understanding of the mechanisms that control cell proliferation
requires the identification of the molecular pathways that govern the
transition of quiescent cells into the S phase of the cell cycle. In this
context the activation and phosphorylation of protein kinase D
(PKD),4 the founding
member of a new protein kinase family within the
Ca2+/calmodulin-dependent protein kinase (CAMK) group and separate
from the previously identified PKCs (for review, see Ref.
1), are attracting intense
attention. In unstimulated cells, PKD is in a state of low catalytic (kinase)
activity maintained by autoinhibition mediated by the N-terminal domain, a
region containing a repeat of cysteinerich zinc finger-like motifs and a
pleckstrin homology (PH) domain
(1–4).
Physiological activation of PKD within cells occurs via a
phosphorylation-dependent mechanism first identified in our laboratory
(5–7).
In response to cellular stimuli
(1), including phorbol esters,
growth factors (e.g. PDGF), and G protein-coupled receptor (GPCR)
agonists (6,
8–16)
that signal through Gq, G12, Gi, and Rho
(11,
15–19),
PKD is converted into a form with high catalytic activity, as shown by in
vitro kinase assays performed in the absence of lipid co-activators
(5,
20).During these studies multiple lines of evidence indicated that PKC activity
is necessary for rapid PKD activation within intact cells. For example, rapid
PKD activation was selectively and potently blocked by cell treatment with
preferential PKC inhibitors (e.g. GF109203X or Gö6983) that do
not directly inhibit PKD catalytic activity
(5,
20), implying that PKD
activation in intact cells is mediated directly or indirectly through PKCs.
Many reports demonstrated the operation of a rapid PKC/PKD signaling cascade
induced by multiple GPCR agonists and other receptor ligands in a range of
cell types (for review, see Ref.
1). Our previous studies
identified Ser744 and Ser748 in the PKD activation loop
(also referred as activation segment or T-loop) as phosphorylation sites
critical for PKC-mediated PKD activation
(1,
4,
7,
17,
21). Collectively, these
findings demonstrated the existence of a rapidly activated PKC-PKD protein
kinase cascade(s). In a recent study we found that the rapid PKC-dependent PKD
activation was followed by a late, PKC-independent phase of catalytic
activation and phosphorylation induced by stimulation of the bombesin
Gq-coupled receptor ectopically expressed in COS-7 cells
(22). This study raised the
possibility that PKD mediates rapid biological responses downstream of PKCs,
whereas, in striking contrast, PKD could mediate long term responses through
PKC-independent pathways. Despite its potential importance for defining the
role of PKC and PKD in signal transduction, this hypothesis has not been
tested in any cell type.Accumulating evidence demonstrates that PKD plays an important role in
several cellular processes and activities, including signal transduction
(14,
23–25),
chromatin organization (26),
Golgi function (27,
28), gene expression
(29–31),
immune regulation (26), and
cell survival, adhesion, motility, differentiation, DNA synthesis, and
proliferation (for review, see Ref.
1). In Swiss 3T3 fibroblasts, a
cell line used extensively as a model system to elucidate mechanisms of
mitogenic signaling
(32–34),
PKD expression potently enhances ERK activation, DNA synthesis, and cell
proliferation induced by Gq-coupled receptor agonists
(8,
14). Here, we used this model
system to elucidate the role and mechanism(s) of biphasic PKD activation.
First, we show that the Gq-coupled receptor agonists bombesin and
vasopressin, in contrast to phorbol esters, specifically induce PKD activation
through early PKC-dependent and late PKC-independent mechanisms in Swiss 3T3
cells. Subsequently, we demonstrate for the first time that the
PKC-independent phase of PKD activation is responsible for promoting ERK
signaling and progression to DNA synthesis through an epidermal growth factor
receptor (EGFR)-dependent pathway. Thus, our results identify a novel
mechanism of Gq-coupled receptor-induced mitogenesis mediated by
sustained PKD activation through a PKC-independent pathway. 相似文献
3.
Haiqin Lu Hung-Tat Leung Ning Wang William L. Pak Bih-Hwa Shieh 《The Journal of biological chemistry》2009,284(17):11100-11109
Ca2+ modulates the visual response in both vertebrates and
invertebrates. In Drosophila photoreceptors, an increase of
cytoplasmic Ca2+ mimics light adaptation. Little is known regarding
the mechanism, however. We explored the role of the sole Drosophila
Ca2+/calmodulin-dependent protein kinase II (CaMKII) to mediate
light adaptation. CaMKII has been implicated in the phosphorylation of
arrestin 2 (Arr2). However, the functional significance of Arr2
phosphorylation remains debatable. We identified retinal CaMKII by anti-CaMKII
antibodies and by its Ca2+-dependent autophosphorylation. Moreover,
we show that phosphorylation of CaMKII is greatly enhanced by okadaic acid,
and indeed, purified PP2A catalyzes the dephosphorylation of CaMKII.
Significantly, we demonstrate that anti-CaMKII antibodies
co-immunoprecipitate, and CaMKII fusion proteins pull down the catalytic
subunit of PP2A from fly extracts, indicating that PP2A interacts with CaMKII
to form a protein complex. To investigate the function of CaMKII in
photoreceptors, we show that suppression of CaMKII in transgenic flies affects
light adaptation and increases prolonged depolarizing afterpotential
amplitude, whereas a reduced PP2A activity brings about reduced prolonged
depolarizing afterpotential amplitude. Taken together, we conclude that CaMKII
is involved in the negative regulation of the visual response affecting light
adaptation, possibly by catalyzing phosphorylation of Arr2. Moreover, the
CaMKII activity appears tightly regulated by the co-localized PP2A.Visual transduction is the process that converts the signal of light
(photons) into a change of membrane potential in photoreceptors (see Ref.
1 for review). Visual signaling
is initiated upon the activation of rhodopsins by light: light switches on
rhodopsin to generate metarhodopsin, which activates the heterotrimeric
Gq in Drosophila
(2). Subsequently, the
GTP-bound Gαq subunit activates phospholipase Cβ4
encoded by the norpA (no receptor
potential A) gene
(3). Phospholipase Cβ4
catalyzes the breakdown of phosphoinositol 4,5-bisphosphate to generate
diacylglycerol, which or its metabolite has been implicated in gating the
transient receptor potential
(TRP)2 and TRP-like
channels (4,
5). TRP is the major
Ca2+ channel that mediates the light-dependent depolarization
response leading to an increase of cytosolic Ca2+ in
photoreceptors. The rise of intracellular Ca2+ modulates several
aspects of the visual response including activation, deactivation, and light
adaptation (6). For example,
Ca2+ together with diacylglycerol activates a classical protein
kinase C, eye-PKC, which is critical for the negative regulation of visual
signaling by modulating deactivation and light adaptation
(7–11).Light adaptation is the process by which photoreceptors adjust the visual
sensitivity in response to ambient background light by down-regulating
rhodopsin-mediated signaling. Light adaptation can be arbitrarily subdivided
into long term and short term adaptation and may involve multiple regulations
to reduce the efficiency of rhodopsin, G protein, or cation channels. For
example, translocation of both Gq
(12,
13) and TRP-like channels
(14,
15) out of the visual
organelle may contribute to long term adaptation in Drosophila. In
contrast, short term adaptation may be orchestrated by modulating the activity
of signaling proteins by protein kinases. Hardie and co-workers
(16) demonstrated that an
increase of cytoplasmic [Ca2+] mimicked light adaptation, leading
to inhibition of the light-induced current. These authors also showed that
light adaptation is independent of eye-PKC. Thus the effect of cytoplasmic
Ca2+ to control light adaptation is likely mediated via calmodulin
and CaMKII. The contribution of CaMKII to light adaptation has not been
explored.CaMKII is a multimeric Ca2+/calmodulin-dependent protein kinase
that modulates diverse signaling processes
(17). Drosophila
contains one CaMKII gene (18)
that gives rise to at least four protein isoforms
(19). These CaMKII isoforms
share over 85% sequence identities with the α isoform of vertebrate
CaMKII. For insights into the in vivo physiological role of CaMKII,
Griffith et al. (20)
generated transgenic flies (ala) expressing an inhibitory domain of
the rat CaMKII under the control of a heat shock promoter, hsp70.
They demonstrated that, upon heat shock treatment, the overexpression of the
inhibitory peptide resulted in a suppression of the endogenous CaMKII activity
in the transgenic flies (20).
It has been shown that inhibition of CaMKII affects learning and memory
(20) and neuronal functions
(21–24).
In photoreceptors, CaMKII has been implicated in the phosphorylation of the
major visual arrestin, Arr2
(25,
26). However, how
phosphorylation of Arr2 by CaMKII modifies the visual signaling remains to be
elucidated.Here we report the biochemical and electrophysiological analyses of CaMKII
in Drosophila retina. We demonstrate that suppression of CaMKII in
ala1 transgenic flies leads to a phenotype indicative of
defective light adaptation. The ala1 flies also display
greater visual response, suggesting a defect in Arr2. These results support
the notion that CaMKII plays a role in the negative regulation of the visual
response. Our biochemical analyses demonstrate that dephosphorylation of
CaMKII is mediated by protein phosphatase 2A (PP2A). Importantly, we show that
PP2A interacts with CaMKII, indicating that CaMKII forms a stable protein
complex with PP2A to ensure a tight regulation of the kinase activity. Thus a
partial loss of function in PP2A would elevate the CaMKII activity. Indeed, we
show that mts heterozygotes display reduced prolonged depolarizing
potential (PDA) amplitude. This PDA phenotype strongly suggests that Arr2
becomes more effective to terminate the visual signaling in mts
flies. Together, our findings indicate that the ability of Arr2 to terminate
metarhodopsin is increased upon phosphorylation by CaMKII, and the retinal
CaMKII activity is regulated by PP2A. 相似文献
4.
Protein Kinase Cδ Mediates Neurogenic but Not Mitogenic Activation of Mitogen-Activated Protein Kinase in Neuronal Cells
下载免费PDF全文

Kevin C. Corbit David A. Foster Marsha Rich Rosner 《Molecular and cellular biology》1999,19(6):4209-4218
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling. 相似文献
5.
《Cell communication & adhesion》2013,20(4-6):253-256
We have used adenoviral vectors to express dominant negative variants of protein kinase C epsilon (PKC?) or mitogen kinase kinase 1 (MKK1) to investigate their involvement in phorbol ester-induced connexin-43 (Cx43) phosphorylation in cardiomyocytes. Stimulation of cardiomyocytes with phorbol 12-myristate 13-acetate (PMA) increased the fraction of the slower migrating (≥45 kDa) and more extensively phosphorylated Cx43 species. Expression of dominant negative MKKI did not prevent the effect of PMA on Cx43 phosphorylation. Selective inhibition of PKC? significantly decreased baseline levels of Cx43 phosphorylation and the PMA-induced accumulation of ≥45 kDa Cx43. Thus, production of the more extensively phosphorylated species of Cx43 in cardiomyocytes by PMA requires activation of PKC?. 相似文献
6.
Adebola Falae Audrey Combe Anburaj Amaladoss Teresa Carvalho Robert Menard Purnima Bhanot 《The Journal of biological chemistry》2010,285(5):3282-3288
The liver is the first organ infected by Plasmodium sporozoites during malaria infection. In the infected hepatocytes, sporozoites undergo a complex developmental program to eventually generate hepatic merozoites that are released into the bloodstream in membrane-bound vesicles termed merosomes. Parasites blocked at an early developmental stage inside hepatocytes elicit a protective host immune response, making them attractive targets in the effort to develop a pre-erythrocytic stage vaccine. Here, we generated parasites blocked at a late developmental stage inside hepatocytes by conditionally disrupting the Plasmodium berghei cGMP-dependent protein kinase in sporozoites. Mutant sporozoites are able to invade hepatocytes and undergo intracellular development. However, they remain blocked as late liver stages that do not release merosomes into the medium. These late arrested liver stages induce protection in immunized animals. This suggests that, similar to the well studied early liver stages, late stage liver stages too can confer protection from sporozoite challenge. 相似文献
7.
Albert S. Reger Matthew P. Yang Shizuyo Koide-Yoshida Elaine Guo Shrenik Mehta Keizo Yuasa Alan Liu Darren E. Casteel Choel Kim 《The Journal of biological chemistry》2014,289(37):25393-25403
cGMP-dependent protein kinase (PKG)-interacting proteins (GKIPs) mediate cellular targeting of PKG isoforms by interacting with their leucine zipper (LZ) domains. These interactions prevent aberrant signaling cross-talk between different PKG isotypes. To gain detailed insight into isotype-specific GKIP recognition by PKG, we analyzed the type II PKG leucine zipper domain and found that residues 40–83 dimerized and specifically interacted with Rab11b. Next, we determined a crystal structure of the PKG II LZ-Rab11b complex. The PKG II LZ domain presents a mostly nonpolar surface onto which Rab11b docks, through van der Waals interactions. Contact surfaces in Rab11b are found in switch I and II, interswitch, and the β1/N-terminal regions. This binding surface dramatically differs from that seen in the Rab11 family of interacting protein complex structures. Structural comparison with PKG Iα and Iβ LZs combined with mutagenic analysis reveals that GKIP recognition is mediated through surface charge interactions. 相似文献
8.
Background
Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Methodology/Principal Findings
Here, we found that AMPK-induced phospholipase D1 (PLD1) activation is required for 14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT) stimulates PLD activity, while AMPK-dominant negative (DN) inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in 14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of 14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK) is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA), which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate 14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator) regulate 14C-glucose uptake and cell surface glucose transport (GLUT) 4 through ERK stimulation by AMPK-mediated PLD1 activation.Conclusions/Significance
These results suggest that AMPK-mediated PLD1 activation is required for 14C-glucose uptake through ERK stimulation. We propose that the AMPK-mediated PLD1 pathway may provide crucial clues to understanding the mechanisms involved in glucose uptake. 相似文献9.
Bacillus anthracis causes anthrax in human and animals. Both, signaling system such as two component system and endogenous chaperone system such as GroEL–GroES help bacteria to cope with the environmental challenges. Such molecular chaperones are the stress induced proteins that help bacteria to override unfavorable conditions by their moonlighting functions. Previous reports showed that PrkC and PrpC, the Ser/Thr kinase–phosphatase pair in B. anthracis, control phosphorylation of GroEL and regulate biofilm formation. In this study, we show that GroEL is involved in the folding of PrkC to active form. The proteins (GroEL, PrkC and PrpC) were expressed and purified by affinity chromatography. Purified GroEL was used for refolding of denatured PrkC and PrpC and observed that GroEL refolds PrkC but not PrpC as measured by their enzymatic activity. We also observed that purification of GroEL with six histidine tag using Cobalt-Agarose resin yielded superior quality GroEL protein with negligible contamination of non-specific proteins. Thus, cobalt resin can be a better choice for purification of many histidine tagged proteins, where Ni-NTA does not work very well. 相似文献
10.
Satish Srinivasan Joseph Spear Karunakaran Chandran Joy Joseph Balaraman Kalyanaraman Narayan G. Avadhani 《PloS one》2013,8(10)
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS. 相似文献
11.
Fariba Rezaee Samantha A. DeSando Andrei I. Ivanov Timothy J. Chapman Sara A. Knowlden Lisa A. Beck Steve N. Georas 《Journal of virology》2013,87(20):11088-11095
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases. 相似文献
12.
13.
Ka Lung Cheung Jong Hun Lee Limin Shu Jung-Hwan Kim David B. Sacks Ah-Ng Tony Kong 《The Journal of biological chemistry》2013,288(31):22378-22386
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699–905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway. 相似文献
14.
15.
Heike D?ppler Ligia I. Bastea Tim Eiseler Peter Storz 《The Journal of biological chemistry》2013,288(1):455-465
Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration. 相似文献
16.
Adriana A. Paulucci-Holthauzen Leoncio A. Vergara Larry J. Bellot David Canton John D. Scott Kathleen L. O'Connor 《The Journal of biological chemistry》2009,284(9):5956-5967
Protein kinase A (PKA) has been suggested to be spatially regulated in
migrating cells due to its ability to control signaling events that are
critical for polarized actin cytoskeletal dynamics. Here, using the
fluorescence resonance energy transfer-based A-kinase activity reporter
(AKAR1), we find that PKA activity gradients form with the strongest activity
at the leading edge and are restricted to the basal surface in migrating
cells. The existence of these gradients was confirmed using
immunocytochemistry using phospho-PKA substrate antibodies. This observation
holds true for carcinoma cells migrating randomly on laminin-1 or stimulated
to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase
inhibition allows the formation of PKA activity gradients; however, these
gradients are no longer polarized. PKA activity gradients are not detected
when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is
inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is
perturbed. We further find that a specific A-kinase anchoring protein,
AKAP-Lbc, is a major contributor to the formation of these gradients. In
summary, our data show that PKA activity gradients are generated at the
leading edge of migrating cells and provide additional insight into the
mechanisms of PKA regulation of cell motility.Cell motility is controlled by a complex network of signals that are
initiated by binding to the extracellular matrix. Understanding the
biochemical mechanisms that control cell migration is necessary for better
comprehension of processes like wound healing, embryonic development, and
angiogenesis as well as cancer metastasis
(1).
PKA3 is an important
regulator of cell signaling and various biological functions
(2-4).
Previous studies have shown that cell motility is delicately controlled by
synthesis and breakdown of cAMP through its effects on PKA. PKA regulates key
signaling events that are critical for actin cytoskeletal remodeling and cell
polarization during migration, including control of the activation states of
RhoA, Rac, cdc42, Pak, and c-Abl. For example, PKA is known to inhibit the
activation of RhoA, whereas it is required for the activation of Rac1, two
proteins that are spatially regulated during cell migration. Therefore, it has
been suggested that PKA activity in migrating cells is spatially regulated
(5-9).
The mounting evidence for the formation of cAMP/PKA gradients and their
influence over directed cell motility is compelling. To conclusively determine
that PKA activity gradients exist, the visualization of these gradients in
single cells is needed to determine the nature of gradients and the mechanisms
governing how they are formed.The compartmental action of cAMP was suggested over three decades ago
(10,
11) and has hence been shown
to mediate the precise spatiotemporal control of its effectors
(12-15).
Tight control of cAMP levels is governed by the coordinated actions of cyclic
nucleotide phosphodiesterases (PDEs) and adenylyl cyclases. Gradients of cAMP
and, thus, PKA activity are expected to exist in a cell. This idea is based,
most simplistically, on the fact that cAMP is generated by membrane-bound
adenylyl cyclases and broken down by cytosolic PDEs; that is, the two arms of
cAMP metabolism are spatially separated. Further compartmentalization of PKA
activity also occurs as a result of the anchoring of PKA and cAMP-specific
PDEs to A-kinase anchoring proteins (AKAPs), which has been demonstrated in a
variety of cell types (16,
17). The anchoring of PKA
occurs typically through the binding of the type II regulatory (RII) subunits
to AKAPs where the relative levels of PDE activity and cAMP generated regulate
the regional activity of PKA. PKA anchoring, in addition to cAMP synthesis and
degradation, is believed to control spatial signaling of PKA
(14,
15). Until recently, we have
lacked both the model systems and technology to adequately study the
possibility that cAMP/PKA activity gradients exist. We and others
(5-8)
have established that polarization and migration of cells are dependent on
cAMP synthesis and breakdown. Here, we sought to demonstrate the existence of
cAMP/PKA gradients in single migrating cells using the fluorescence resonance
energy transfer (FRET)-based PKA biosensor A-kinase activity reporter (AKAR1)
and determine how signaling components that regulate PKA activity, including
cAMP synthesis, PDEs, and PKA anchoring, affect the formation of these
gradients. 相似文献
17.
18.
C. Hugh Reynolds Michelle A. Utton Graham M. Gibb Alexandra Yates Brian H. Anderton 《Journal of neurochemistry》1997,68(4):1736-1744
Abstract: A proportion of the neuronal microtubule-associated protein (MAP) τ is highly phosphorylated in foetal and adult brain, whereas the majority of τ in the neurofibrillary tangles of Alzheimer's patients is hyperphosphorylated; many of the phosphorylation sites are serines or threonines followed by prolines. Several kinases phosphorylate τ at such sites in vitro. We have now shown that purified recombinant stress-activated protein kinase/c-Jun N-terminal kinase, a proline-directed kinase of the MAP kinase extended family, phosphorylates recombinant τ in vitro on threonine and serine residues. Western blots using antibodies to phosphorylation-dependent τ epitopes demonstrated that phosphorylation occurs in both of the main phosphorylated regions of τ protein. Unlike glycogen synthase kinase-3, the c-Jun N-terminal kinase readily phosphorylates Thr205 and Ser422 , which are more highly phosphorylated in Alzheimer τ than in foetal or adult τ. Glycogen synthase kinase-3 may preferentially phosphorylate the sites found physiologically, in foetal and to a smaller extent in adult τ, whereas stress-activated/c-Jun N-terminal kinase and/or other members of the extended MAP kinase family may be responsible for pathological proline-directed phosphorylations. Inflammatory processes in Alzheimer brain might therefore contribute directly to the pathological formation of the hyperphosphorylated τ found in neurofibrillary tangles. 相似文献
19.
Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. 相似文献