首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. The inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kdul-kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

2.
In contrast to the closely related bacteria Erwinia chrysanthemi, the kDu mutant of Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite.  相似文献   

3.
The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.  相似文献   

4.
Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant pathogenic bacteria or 162 saprophytic bacteria from potato tubers. Only one strain of E. chrysanthemi from potato cross-reacted. A comparison of several serological techniques to detect E. carotovora subsp. atroseptica on potato tubers was performed with MAb 4G4 or polyclonal antibodies. The organism was extracted directly from potato peels of artificially inoculated tubers by soaking or selective enrichment under anaerobiosis in a medium with polypectate. MAb 4G4 was able to detect specifically 240 E. carotovora subsp. atroseptica cells per ml by indirect immunofluorescence and immunofluorescence colony staining and after soaking by ELISA-DAS (double-antibody sandwich enzyme-linked immunosorbent assay) after enrichment. The same amount of cells was detected by using immunolectrotransfer with polyclonal antibodies, and E. carotovora subsp. atroseptica and subsp. carotovora were distinguished by the latter technique. ELISA-DAS using MAb 4G4 with an enrichment step also efficiently detected E. carotovora subsp. atroseptica in naturally infected tubers and plants.  相似文献   

5.
Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the α-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten “atypical” E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two “atypical” E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica.  相似文献   

6.
Tip-over disease has become a serious threat to banana plantations in the past decade. The disease is reported to be caused by Erwinia carotovorasubsp. carotovora and Erwinia chrysanthemi. We compared nine Erwinia strains of diseased banana plants from different agroclimatic zones of Karnataka and Andhra Pradesh, Southern India by conventional means. On the basis of morphological, cultural, physiological and biochemical characteristics and pathogenicity tests, the seven isolates I1 to I6 and I8 showed similarities to Erwinia carotovorasubsp. carotovora. Isolate I9 from Andhra Pradesh expressed characteristics similar to that of Erwinia chrysanthemi and was identified as Erwinia chrysanthemi. The isolate I7 which showed wider variation, neither confirmed to the characteristics of Erwinia carotovorasubsp. carotovora nor with that of Erwinia chrysanthemi, and possessed characteristics in between the two species. Further we studied the host range of the bacterium causing tip-over disease of banana.  相似文献   

7.
8.
A 2.1 kb Bam H1 DNA fragment encoding a pectate lyase (PL) enzyme was isolated from an Erwinia carotovora subsp. atroseptica (Eca) cosmid library. The fragment was labeled with 32P-CTP and hybridized to total DNA digests from selected bacteria which included plant-invasive as well as plant associative organisms. The pel gene probe hybridized to E. carotovora subsp. carotovora (Ecc) DNA under all conditions tested. Hybridization to DNAs from Agrobacterium tumefaciens and Pseudomonas marginalis was observed at low stringency conditions (45°C). No hybridization was observed between the pel gene probe and six other DNA samples.  相似文献   

9.
In contrast to the closely related bacteria Erwinia chrysanthemi, bacteria Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite.  相似文献   

10.
2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi.   总被引:3,自引:2,他引:1       下载免费PDF全文
In Erwinia chrysanthemi, the gene kdgT encodes a transport system responsible for the uptake of ketodeoxyuronates. We studied the biochemical properties of this transport system. The bacteria could grow on 2,5-diketo-3-deoxygluconate but not on 2-keto-3-deoxygluconate. The 2-keto-3-deoxygluconate entry reaction displayed saturation kinetics, with an apparent Km of 0.52 mM (at 30 degrees C and pH 7). 5-Keto-4-deoxyuronate and 2,5-diketo-3-deoxygluconate appeared to be competitive inhibitors, with Kis of 0.11 and 0.06 mM, respectively. The 2-keto-3-deoxygluconate permease could mediate the uptake of glucuronate with a low affinity. kdgT was cloned on an R-prime plasmid formed by in vivo complementation of a kdgT mutation of Escherichia coli. After being subcloned, it was mutagenized with a mini-Mu-lac transposable element able to form fusions with the lacZ gene. We introduced a kdgT-lac fusion into the E. chrysanthemi chromosome by marker exchange recombination and studied its regulation. kdgT product synthesis was not induced by external 2-keto-3-deoxygluconate in the wild-type strain but was induced by galacturonate and polygalacturonate. Two types of regulatory mutants able to grow on 2-keto-3-deoxygluconate as the sole carbon source were studied. Mutants of one group had a mutation in the operator region of kdgT; mutants of the other group had a mutation in kdgR, a regulatory gene controlling kdgT expression.  相似文献   

11.
    
The structural gene for the major cellulase of Erwinia carotovora subspecies carotovora (Ecc) was isolated and expressed in Escherichia coli. Sequencing of the gene (celV) revealed a typical signal sequence and two functional domains in the enzyme; a catalytic domain linked by a short proline/threonine-rich linker to a cellulose-binding domain (CBD). The deduced amino acid sequence of the catalytic domain showed homology with cellulases of Family A, including enzymes from Bacillus spp. and Erwinia chrysanthemi CelZ, whereas the CBD showed homology with cellulases from several diverse families, supporting a mix-and-match hypothesis for evolution of this domain. Analysis of the substrate specificity of CelV showed it to be an endoglucanase with some exoglucanase activity. The pH optimum is about 7.0 and the temperature optimum about 42°C. CelV is secreted by Ecc and by the taxonomically related Erwinia carotovora subspecies atroseptica (Eca) but not by E. coli. Overproduction of the enzyme from multicopy plasmids in Ecc appears to overload the secretory mechanism.  相似文献   

12.
Tachyplesin I is a 2.3 kDa antimicrobial peptide isolated from Southeast Asian horseshoe crabs. Bacterial suspensions containing 1×106 colony-forming units/ml of six isolates of pectolytic Erwinia spp., the causal pathogens of potato soft rot and blackleg, were killed in vitro by 1.4 to 11.1 g/ml of tachyplesin I. In an attempt to enhance resistance to Erwinia spp., each of the potato cultivars Bintje, Karnico and Kondor were transformed with two gene constructs encoding different precursor tachyplesin I proteins under the control of a cauliflower mosaic virus 35S promotor. Northern and western blot analysis showed that the tachyplesin I gene was expressed in transgenic plants. Small tubers of 17 transgenic clones were screened twice for soft rot resistance to Erwinia carotovora ssp. atroseptica. Under aerobic or anaerobic conditions, transgenic clones showed slightly less rot than control tubers.Abbreviations AP acidic carboxyl terminal polypeptide - Eca Erwinia carotovora ssp. atroseptica - Ecc E. carotovora ssp. carotovora - Ech E. chrysanthemi - IF intercellular fluid - SP signal peptide - TPNI (tpnI) tachyplesin I  相似文献   

13.
Summary We have tested for the presence of the receptor for the Escherichia coli phage T4 in different isolates of the plant pathogenic enterobacteria Erwinia carotora subsp. carotovora and subsp. atroseptica. Several of the isolates appeared to contain a functional T4 receptor as shown by phage adsorption and phage-induced lysis of the bacteria. Two of the isolates could even sustain lytic growth of T4. In addition, we show that the transducing derivative of T4, T4GT7, can be employed to transfer plasmids from E. coli to E. carotovora thus opening up new possibilities for genetic analysis of Erwinia.  相似文献   

14.
The structural gene for the major cellulase of Erwinia carotovora subspecies carotovora (Ecc) was isolated and expressed in Escherichia coli. Sequencing of the gene (celV) revealed a typical signal sequence and two functional domains in the enzyme; a catalytic domain linked by a short proline/threonine-rich linker to a cellulose-binding domain (CBD). The deduced amino acid sequence of the catalytic domain showed homology with cellulases of Family A, including enzymes from Bacillus spp. and Erwinia chrysanthemi CelZ, whereas the CBD showed homology with cellulases from several diverse families, supporting a “mix-and-match” hypothesis for evolution of this domain. Analysis of the substrate specificity of CelV showed it to be an endoglucanase with some exoglucanase activity. The pH optimum is about 7.0 and the temperature optimum about 42°C. CelV is secreted by Ecc and by the taxonomically related Erwinia carotovora subspecies atroseptica (Eca) but not by E. coli. Overproduction of the enzyme from multicopy plasmids in Ecc appears to overload the secretory mechanism.  相似文献   

15.
Forty-two Pectobacterium isolates were recovered from contaminated soil and rotted vegetables in Jordan. Twenty of them were belonged to; Pectobacterium carotovorum subsp. Carotovorum (Pbc) (= Erwinia carotovora subsp. carotovora), 11 isolates were belonged to Pectobacterium atrospeticum (= Erwinia carotovora subsp. atroseptica) (Pba) and 11 isolates were not classifiable (Pbs). Maceration activity of the 42 proved their ability to macerate potato, carrot and radish slices. Maceration activity of the isolates either of the same subspecies or in between the isolates of different subspecies isolated from the same host or from different hosts was varied. The measured concentration in μM?ml?1 of both cellulase and pectinase enzymes was variable too. The Rapid amplified polymorphic DNA-PCR finger printing of total genomic DNA using a pair of 10-mer oligonucleotide primers amplification showed similar DNA bands with some polymorphic variations amongst the isolates.  相似文献   

16.
The ceIV1 gene encoding a secreted cellulase (CelV1) of Erwinia carotovora subsp. carotovora SCC3193 was cloned and its nucleotide sequence determined. The gene contains an open reading frame of 1511 by and codes for an exported protein of 504 amino acids. The predicted amino acid sequence of Ce1V1 was highly similar to that of CeIV of another E. c. subsp. carotovora strain SCRI193 but completely different from the previously characterized cellulase, CelS, of the strain SCC3193. Gene fusions to the lacZ reporter were employed to characterize the regulation of celV1 and celS. Both genes are coordinately induced in a growth phase-dependent manner and are catabolite repressed. Expression of celV1 but not celS was stimulated by plant extracts. The celS gene was expressed at a much lower level than celV1 under all conditions tested. Inactivation of the celV1 gene in E. c. subsp. carotovora strain SCC3193 by marker exchange showed that celV1 encodes the major cellulase of strain SCC3193, as the resulting mutant strain SCC6001 was devoid of cellulase activity. Ce1Vl mutants exhibited reduced virulence suggesting that CelV1, although not absolutely required for pathogenicity, enhances the ability of strain SCC3193 to macerate plant tissue. Inactivation of the celS gene in the celV1 mutant did not lead to any further decrease in virulence.  相似文献   

17.
Tovkach  F. I. 《Microbiology》2001,70(6):692-697
Of the fifty-two Erwinia carotovorastrains studied, sixteen were found to contain extrachromosomal DNA (plasmids) from 2.5 to 129 kbp in size. Some E. carotovorastrains bore two to five different plasmids. Experiments showed that the cryptic plasmids of erwinia are not responsible for their resistance to antibiotics and are not involved in the synthesis of macromolecular colicin-like carotovoricins. At the same time, one of the E. carotovorastrains, 13A, augmented the production of carotovoricin after curing from one of its plasmids, the 47.7-kbp pCA 6-2. Three E. carotovorasubsp.carotovorastrains and one E. carotovorasubsp.atrosepticastrain contained large 129-kbp plasmids, which may play a role in the ecology of phytopathogenic pectinolytic erwinia.  相似文献   

18.
The characteristics of xylose isomerase biosynthesis in the bacteria Arthrobacter nicotianae BIM B-5, Erwinia carotovora subsp atroseptica jn42xylA, and Escherichia coli HB101xylA have been studied. The bacteria produced the enzyme constitutively. Out of the carbon sources studied, D-glucose and D-xylose were most favorable for the biosynthesis of xylose isomerase in E. carotovora subsp. atroseptica, but the least appropriate in terms of the enzyme production efficiency in E. coli. Minimum and maximum levels of xylose isomerase formation in A. nicotianae were noted, respectively, during D-xylose and sucrose utilization. An addition to the D-xylose-containing nutrient medium of 0.1–1.5% D-glucose did not affect the enzyme synthesis in A. nicotianae, but suppressed it in Erwinia carotovora subsp. atroseptica (by 7% at the highest concentration) and Escherichia coli (by 63 and 75% at concentrations of 0.1 and 1.0%, respectively). The enzyme proteins produced by the bacteria exhibited the same substrate specificity and electrophoretic mobility (PAGE) as xylose isomerase A. nicotianae, although insignificant differences in the major physicochemical properties were noted.  相似文献   

19.
Erwinia carotovora subsp. atroseptica was mutage-nized and assayed for virulence in planta. Those mutants which exhibited reduced virulence (Rvi-) were assayed for growth rate, auxotrophy and extracellular enzyme secretion and seven mutants were found to be wild type for all of these phenotypes. When screened for other phenotypes, two were found to be non-motile. One mutant was complemented for motility by a heterologous gene library. A 2.7kb XmaIII-Clal complementing fragment was sequenced and the gene products were found to have similarity to flagella biosynthesis gene products from several bacteria. Further similarity was found to a pathogenicity protein from the plant pathogen Xanthomonas campestris pv. glycines and to the Spa pathogenicity proteins of the human pathogen Shigella fiexneri, which are involved in the surface presentation of antigens. These studies highlight the emergence of common themes in the molecular strategies employed by both plant and animal bacterial pathogens for the targeting of proteins involved in the elaboration of disease.  相似文献   

20.
Mutants of bacteria belonging the genus Erwinia(Erwinia chrysanthemi andErwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI + allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that theptsIand ptsH genes ofE. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas theptsH gene is located at 175 min. Sequencing of a portion of theE. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号