首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Norway spruce ( Picea abies (L.) Karst.) seedlings were inoculated with the ectomycorrhizal fungus Laccaria bicolor ((Marie) Orton), strain S238 N, in axenic conditions. The presence of the fungus slowed tap–root elongation by 26% during the first 15 d after inoculation and then stimulated it by 136%. In addition, it multiplied in vitro lateral root formation by 4.3, the epicotyl growth of the seedlings by 8.4 and the number of needles by 2. These effects were maintained when the fungus was separated from the roots by a cellophane membrane preventing symbiosis establishment, thus suggesting that the fungus acted by non-nutritional effects. We tested the hypothesis that IAA produced by L. bicolor S238 N would be responsible for the stimulation of fungal induced rhizogenesis. We showed in previous work that L. bicolor S238 N can synthesize IAA in pure culture. Exogenous IAA supplies (100 and 500 μ m ) reproduced the stimulating effect of the fungus on root branching but inhibited root elongation. The presence of 2,3,5-triiodobenzoic acid (TIBA) in the culture medium significantly depressed lateral root formation of inoculated seedlings. As TIBA had no significant effect on IAA released in the medium by L. bicolor S238 N, but counteracted the stimulation of lateral rhizogenesis induced by an exogenous supply of IAA, we suggest that TIBA inhibited the transport of fungal IAA in the root. Furthermore TIBA blocked the colonization of the main root cortex by L. bicolor S238 N and the formation of the Hartig net. These results specified the role of fungal IAA in the stimulation of lateral rhizogenesis and in ectomycorrhizal symbiosis establishment.  相似文献   

2.
The effects of some inhibitors on potassium- and IAA-induced rooting were studied adopting the root-formation bioassay in the excised cucumber ( Cucumis sativus L. ) cotyledon. 5-fluomuracil at 7 Ï 10-4 – 7 Ï10-1 mmol/L and cycloheximide at 3.5 Ï 10-4 – 1.05 Ï10-2 mmol/L significantly inhibited potassium- and IAA-induced adventitious root formation of the excised cucumber cotyledons, respectively. Na3VO4 at 0.1 – 1.0 mmol/L obviously inhibited potassium and IAA-induced adventitious rooting of the excised cucumber cotyledons, and similar inhibitory effect was found with 2,3,5-triiodobenzoic acid (TIBA) at 2 Ï 10-4 – 2 Ï 10-l mmol/L.There is a close relationship between potassium and IAA-induced adventitious rooting and the promotive effect of potassium on rooting is possibly brought about via affecting the endogenous level of IAA.  相似文献   

3.
In this report, we demonstrate that sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the H2S donor to seedling cuttings of sweet potato (Ipomoea batatas L.) promoted the number and length of adventltious roots in a dose-dependent manner. It was also verified that H2S or HS- rather than other sulfur-containing components derived from NariS could be attributed to the stimulation of adventitious root formation. A rapid Increase In endogenous H2S, indole acetic acid (IAA) and NO were sequentially observed in shoot tips of sweet potato seedlings treated with HallS. Further investigation showed that HzS-mediated root formation was alleviated by N-l-naphthylphthalamic acid (NPA), an IAA transport inhibitor, and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger. Similar phenomena in H2S donor-dependent root organogenesis were observed in both excised willow (Sallx matsudana var. tortuosa Vilm) shoots and soybean (Glycine max L.) seedlings. These results indicated that the process of H2S-induced adventitious root formation was likely mediated by IAA and NO, and that H2S acts upstream of IAA and NO signal transduction pathways.  相似文献   

4.
董宁光  高英  王伟  尹伟伦  裴东 《植物学报》2011,46(3):324-330
生长素类物质在木本植物生根过程中发挥重要作用。杨树生根与生长素的关系及生根过程中内源激素的变化已有大量报道, 而生根过程中生长素的组织定位分析则尚未见报道。该文应用免疫化学分析方法对741杨(Populus alba × (P. davidiana × P. simonii) × P. tomentosa)嫩茎生根过程中内源IAA在组织中的分布进行了研究。结果显示, 741杨的嫩茎在无外源激素的1/2MS培养基上诱导10天后可生根, 14天后生根率达100%。诱导前, 嫩茎基部组织中几乎没有IAA信号; 诱导8天后, 嫩茎基部维管组织中有大量的IAA积累, 而且中部的维管组织中也有明显的IAA信号(主要分布在韧皮部和维管形成层); 10天后, 形成不定根原基, 此时IAA主要分布在根原基; 12天后, 根原基分化成不定根并突破表皮, IAA在不定根中的分布主要集中在根尖和中柱。该文对741杨的嫩茎生根过程中IAA的组织分布特点及运输途径进行了讨论。  相似文献   

5.
Poplar 741 [Populus alba × (P. davidiana + P. simonii) × P. tomentosa] leaves were rooted within 8 days when cultured on 1/2 MS medium. The subcellular localization of endogenous indole-3-acetic acid (IAA) in the rhizogenesis was investigated, using an immunocytochemical approach. The results of IAA subcellular localization revealed organelle-specific distribution. Three days after root induction, IAA in vascular cambium cells of the basal region of the petiole was distributed mainly in the plasma membrane, endoplasmic reticulum (ER), and nucleus, with a lesser amount in the cytoplasm. In phloem of the basal region of the petiole, IAA was detected in the plasma membrane and ER of the companion cell and in the plasma membrane of the sieve element. In xylem of the basal region of the petiole, no IAA gold particles were labeled. In mesophyll cells IAA was distributed in the chloroplast starch grains before root induction, and the amount in the chloroplast starch grains increased after 3 days after root induction. This suggests that the plasma membrane and nucleus of cambium cells may be the target sites where IAA performs its physiological activities during poplar leaf rhizogenesis. IAA polar transport from lamina mesophyll to the basal region of the petiole during rhizogenesis is mediated by phloem. The starch grains of mesophyll chloroplasts appeared to accumulate IAA and may be a source of IAA during poplar leaf rhizogenesis. Novel and direct evidence regarding the function of IAA during rhizogenesis is provided in this study.  相似文献   

6.
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.  相似文献   

7.
Summary Effect of sodium chloride and sodium sulphate salinities on growth and mineral nutrition of peanut (A. hypogea L.) variety TMV-10 has been studied. Both salts suppressed growth of the plants. The inorganic analysis revealed that NaCl and Na2SO4 caused accumulation of Na, P, Fe and Mn in root, stem, leaf and gynophore. NaCl treatment caused accumulation of Cl in these parts. The uptake of K was hampered by both salts whereas Ca uptake was retarded mainly by Na2SO4. The results are discussed in relation to the salt tolerance capacity of the plant.  相似文献   

8.
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis.  相似文献   

9.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

10.
Indole-3-butyric acid (IBA), phenylacetic acid (PAA) and naphthaleneacetic acid (NAA) were applied at a concentration of 10-4 mol dm-3 to stem cutting bases ofPopulus x canadensis Moench. During adventitious root formation, the content of indole-3-acetic acid (IAA) in cutting bases was estimated using the fluorimetric method. In the control variant, a rapid increase in endogenous IAA appeared after 24-h cultivation followed by gradual decrease during the following days. In contrast, the variants treated with IBA, PAA, and especially NAA exhibited firstly a decrease in endogenous IAA content and only afterwards an increase, reaching a maximum 48 h after excision. As root regeneration proceeded gradually, a decrease in the level of endogenous IAA occurred in all treatments. The first adventitious roots appeared in all treatments after 216-h cultivation.  相似文献   

11.
This paper reports that rhizogenesis in woody plant species in vitro was mediated through the basipetal transport of auxin from the shoot apex. This can directly induce roots in easy-to-root species such as Betula pendula, but was dependent upon an interaction with exogenous auxin in more difficult-to-root species such as Daphne cneorum, and to a lesser extent in Quercus robur. Shoot apex removal reduced rhizogenesis in Quercus, and inhibited it in Daphne, even in the presence of exogenous auxin, whereas rooting in Betula was unaffected. That basipetally transported auxin modulates rhizogenesis was demonstrated by the inhibition of root induction in Betula shoots by the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), and by the substitution of indole-3-acetic acid (IAA) for a bud in Betula internodal sections.Abbreviations IAA indole-3-acetic acid - IBA indole-3-butyric acid - TIBA 2,3,5-triiodobenzoic acid - MS Murashige and Skoog medium - WPM woody plant medium  相似文献   

12.
A large number of team sports require athletes to repeatedly produce maximal or near maximal sprint efforts of short duration interspersed with longer recovery periods of submaximal intensity. This type of team sport activity can be characterized as prolonged, high-intensity, intermittent running (PHIIR). The primary purpose of the present study was to determine the physiological factors that best relate to a generic PHIIR simulation that reflects team sport running activity. The second purpose of this study was to determine the relationship between common performance tests and the generic PHIIR simulation. Following a familiarization session, 16 moderately trained (VO2max = 40.0 +/- 4.3 ml x kg(-1) x min(-1)) women team sport athletes performed various physiological, anthropometrical, and performance tests and a 30-minute PHIIR sport simulation on a nonmotorized treadmill. The mean heart rate and blood lactate concentration during the PHIIR sport simulation were 164 +/- 6 b x min(-1) and 8.2 +/- 3.3 mmol x L(-1), respectively. Linear regression demonstrated significant relationships between the PHIIR sport simulation distance and running velocity attained at a blood lactate concentration of 4 mmol x L(-1) (LT) (r = 0.77, p < 0.05), 5 x 6-second repeated cycle sprint work (r = 0.56, p < 0.05), 30-second Wingate test (r = 0.61, p < 0.05), peak aerobic running velocity (Vmax) (r = 0.69, p < 0.05), and Yo-Yo Intermittent Recovery Test (Yo-Yo IR1) distance (r = 0.50, p < 0.05), respectively. These results indicate that an increased LT is associated with improved PHIIR performance and that PHIIR performance may be monitored by determining Yo-Yo IR1 performance, 5 x 6-second repeated sprint cycle test work, 30-second Wingate test performance, Vmax, or LT. We suggest that training programs should focus on improving both LT and Vmax for increasing PHIIR performance in moderately trained women. Future studies should examine optimal training methods for improving these capacities in team sport athletes.  相似文献   

13.
The content and distribution of auxins were studied in gravistimulated roots of maize (Zea mays L.) and primary roots of 7-day-old wheat (Triticum durum Desf.) seedlings, which branching was enhanced by excision of adventitious roots. IAA localization was observed immunohistochemically, using specific anti-IAA antibody in combination with second (anti-species) antibody labeled with colloidal gold. Differences in the IAA content (staining intensity) were found between upper and lower parts of gravistimulated maize roots. We also observed IAA accumulation in the primary wheat root after adventitious root excision; the cells of lateral root primordia were characterized by more intense IAA staining. The role of auxin redistribution in plants for lateral root initiation and development is discussed.  相似文献   

14.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

15.
Propagation by softwood canes and cuttings is preferred as a practical system for vegetative reproduction of many ornamental plant species, despite the advances in tissue culture techniques. Dracaena purplecompacta L. is a species that has a high demand for exports. Conversely, coconut water (CW) is a rich supplement that naturally contains plant growth regulators such as indole acetic acid (IAA). The objective of this work was to evaluate the potential of CW extracts containing natural IAA, on adventitious root development in vegetative propagation of ornamental plant canes of D. purplecompacta L. Five different concentrations (28, 57, 143, 286, 571 μM of natural IAA) of CW extracts were tested. Another set of treatment was carried out with the same concentrations of authentic IAA hormone for comparison purpose. The 143-μM IAA CW extract recorded the best root induction and development. It was found that the root expression was faster (5 weeks) with the use of the novel method. In the conventional method, the canes are propagated by quick dip application of commercial product containing artificial hormone IAA and placing them on coir fiber dust beds. It takes up to 6 weeks for the canes to develop adventitious roots to the desired level. Steeping canes in 143-μM IAA CW extract improved rooting in D. purplecompacta L., and it was comparable to the application of 143-μM authentic IAA. The study indicates that adventitious root development, shoot development, and leaf emergence of D. purplecompacta L. is promoted by IAA CW extracts.  相似文献   

16.
7-Chloroindoleacetic acid and dichloroindoleacetic acids with a Cl in the 7 position showed anti-auxinic activity and promoted root growth in wheat ( Triticum aestivum L. cv. Diamant II). In contrast, 4-, 5- and 6-chloroindoleatetic acids acted as strong auxins inhibiting the growth of wheat roots. Flax ( Linum usitatissimum L. cv. Concurrent) and cucumber ( Cucumis sativus L. cv. Favör) roots showed similar, but less clear-cut responses. 7-Chloroindoleacetic acid and 4,7-dichloroindoleacetic acid alleviated root growth inhibition in wheat caused by IAA, monochloroindoleacetic acids and benzyladenine. 2,4-D, 4- and 6-chloroindoleacetic acids strongly induced ethylene formation in cucumber seedlings; 4,7- and 6,7-dichloroindoleacetic acids did not, except at high concentrations. The more lipid-soluble dichloroindoleacetic acids were stronger inhibitors of ATP formation in cucumber mitochondria than monochloroindoleacetic acids, while IAA itself had only a very slight effect.  相似文献   

17.
The aim of this article was to quantify the distribution of training intensities and its effect on aerobic fitness in professional elite soccer players. Fourteen professional soccer players were observed during the prechampionship training period (6 weeks). Treadmill running speed and heart rates (HRs) at 2 and 4 mmol · L(-1) blood-lactate concentrations were assessed pre and posttraining. Training intensities were categorized using 3 HR zones: low intensity (
HR 4 mmol · L(-1)). Analysis of the 504 individual training sessions showed that 73 ± 2.5, 19 ± 2.8, and 8 ± 1.4% of the total training time was spent at low, moderate, and high intensity, respectively (p < 0.001). Speed at 2 and 4 mmol · L(-1) significantly improved posttraining (5 and 7%, respectively, p < 0.01). Training spent at high intensity was significantly related to relative speed improvements at 2 mmol · L(-1) (r = 0.84, p < 0.001;) and 4 mmol · L(-1) (r = 0.65, p = 0.001). Players spent almost two-thirds of their training time at low intensities. However, only the time spent at high intensity (>90% of maximal HR) was related to changes in aerobic fitness. These results support the usefulness of the quantification of aerobic training load using HR. Furthermore, it stresses the effectiveness of the high-intensity training in soccer.  相似文献   

18.
Peuler JD  Lee JM  Smith JM 《Life sciences》1999,65(23):PL 287-PL 293
The ability of metformin (MF) to acutely relax phenylephrine (PE)-induced contraction in the isolated rat tail artery is reported to be accompanied by repolarization of the arterial smooth muscle cell (SMC) membranes. These membranes contain potassium (K) channels which if opened could mediate such repolarization and resultant relaxation. We have shown that the acute relaxation of rat tail arterial tissue rings by graded levels of MF > or = 0.24 mmol/L is markedly antagonized by a high concentration of tetraethylammonium (TEA; 10 mmol/L) which nonselectively inhibits nearly all K channels. Thus, we tested effects of more selective inhibitors of K channels in the same tissue. We also tested MF for relaxation of contractions induced by high levels of extracellular K. To avoid confounding variables, we also conducted these tests in arterial rings in which endothelium and sympathetic nerve endings had been removed. In the absence of K channel inhibition, half-maximal PE-induced contractions were rapidly relaxed by all levels of MF with an EC50 of 1.7+/-0.2 mmol/L (n=8 rings). 1 mmol/L 4-aminopyridine (4AP) which only inhibits voltage-operated and ATP-sensitive K channels markedly antagonized this relaxation, shifting the EC50 for MF to 7.5+/-0.7 mmol/L (n=8; p < 0.05). TEA at 1 mmol/L (which only inhibits calcium-activated K channels), barium at 20 micromol/L (which only inhibits inward rectifier K channels) and glyburide at 5 micromol/L (which only inhibits ATP-sensitive K channels) did not alter this relaxation. Finally, MF failed to relax contractions produced by elevations of extracellular K to levels high enough to abolish the K gradient across arterial SMC membranes. Thus, acute relaxation of rat tail arterial smooth muscle by MF may be dependent on the transmembrane K gradient and mediated at least in part by specific activation of K efflux through 4AP-sensitive voltage-dependent K channels in arterial SMC membranes.  相似文献   

19.
生长素和模拟微重力效应对大白菜不定根形态发生的影响   总被引:6,自引:0,他引:6  
Under the induction of indole-3-acetic acid (IAA), adventitious roots were differentiated on hypocotyl segments derived from seedlings of Chinese cabbage (Brassica campestris spp. pekinensis). IAA at concentration of 0.4-1.0 mg/L in solid MS medium incited many adventitious roots on hypocotyl segments. The earliest anatomic changes were observed on cut surface of hypocotyl segments under optical microscope 24 hours after IAA treatment: cytoplasmic and nuclear density became higher in a few of parenchytmatous cells adjacent to phloem in tissue of pericycle, followed by cell divisions. Lately, the dividing cells expanded and developed into root primordium from which root cap was differentiated. After five days, most roots protruded through hypocotyl cortex and appeared just below the cut surface. The rooting capacity of the segments derived from three regions of each hypocotyl was different. High level of IAA modified the polarity of root formation on segment inserted upside down and sucrose increased the function of IAA. Additionally, microgravity did not significantly change the rooting polarity under the condition of stimulated microgravity, but it increased the competence of explants to IAA treatment. The results presented here provided an experimental system for further investigation of molecular events associated with adventitious root initiation.  相似文献   

20.
Cultural conditions affecting the induction of rhizogenesis in vitro were evaluated in cashew (Anacardium occidentale L.) shoot-node-derived microshoots. The application of auxins was essential for the formation of adventitious roots. A 5-d indole-3-butyric acid (IBA) induction period was more suitable than continuous IBA treatment or a shorter induction period. N6-[2-Isopentenyl]adenine in low concentrations (0.3 – 1 µM) in the root induction medium supported root formation. Precultivation of microshoots with gibberellic acid (GA3) suppressed the subsequent rhizogenesis. Activated charcoal did not affect rooting. No significant differences in rooting abilities of cashew shoots were observed between 25, 29 and 35 °C and roots did not develop at 19 °C. Salts of low osmotic composition were more suitable than richer media. Microshoots originated from cotyledonary nodes showed higher rooting when compared to standard microshoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号