首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Monoclonal antibodies prepared to epitopes encoded by the transforming gene (v-fms) of the McDonough strain of feline sarcoma virus were used to study v-fms-coded antigens in feline sarcoma virus-transformed rat and mink cells. These antibodies reacted with three different polypeptides (gP180gag-fms, gp140fms, and gp120fms), all of which were shown to be glycosylated. Protein blotting with [125I]-labeled monoclonal immunoglobulin G's was used to determine the relative steady-state levels of these glycoproteins in transformed cells and showed that gp120 and gp140 were the predominant products. Immunofluorescence assays and subcellular fractionation experiments localized these molecules to the cytoplasm of transformed cells in quantitative association with sedimentable organelles. Thus, v-fms-coded glycoproteins differ both chemically and topologically from the partially characterized products of other known oncogenes and presumably transform cells by a different mechanism.  相似文献   

2.
The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane.  相似文献   

3.
Glucocorticoid hormone is required for complete posttranslational processing of the glycosylated mouse mammary tumor virus envelope precursor, Pr74env in the murine T-lymphosarcoma cell line, W7MG1. Metabolic labeling studies with [35S]methionine, [3H]galactose, and [3H]mannose, combined with enzymatic digestion analyses with a variety of endoglycosidases, demonstrated that both proteolytic processing and N-linked oligosaccharide maturation depended, either directly or indirectly, on glucocorticoid action. Pr74 is found in both control and hormone-treated cells. In both cases Pr74 molecules carry high mannose and/or hybrid, but not complex, oligosaccharide chains with very little or no sialic acid. When cells are grown with glucocorticoid, Pr74 is converted to gp52 and gp33 with greatly increased efficiency, and these mature glycoproteins carry complex oligosaccharides containing sialic acid. No O-linked carbohydrate was detected on any of these species. According to this evidence, the glucocorticoid-regulated step in this pathway must occur at or before the final mannose trimming step in the Golgi that is required for formation of complex carbohydrate chains.  相似文献   

4.
Processing inhibitors of N-linked glycans were used to determine whether correct glycosylation of the oncogene product gp140v-fms, encoded by the McDonough strain of feline sarcoma virus (SM-FeSV), is required to maintain the oncogenic properties of v-fms. SM-FeSV-transformed cells treated with the glucosidase-I inhibitors N-methyldeoxynojirimycin (MdN) or castanospermine synthesized predominantly a gp125v-fms species which had a normal half life. The molecule was transported to the plasma membrane and exhibited normal kinase activity as determined by autophosphorylation. However, although no significant change in cell morphology of the SM-FeSV-transformed cells was observed in the presence of castanospermine, growth of these cells became strictly serum-dependent. In addition, growth in soft agar was drastically retarded despite the presence of 10% calf serum, indicating that the transformed properties of the cells were altered. In contrast, swainsonine, an inhibitor of the processing alpha-mannosidase-II, had no effect. Cells transformed by the Snyder Theilen strain of FeSV were used to demonstrate that the altered proliferative properties were directly linked to the modified structure of the fms gene product. Our data suggest that the extracellular domain of gp140v-fms plays a role in regulating cell proliferation.  相似文献   

5.
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180gag-fms encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180gag-fms) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120v-fms, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. Both constructs were biologically active when transfected into NIH 3T3 cells and produced morphologically transformed foci at equivalent efficiencies. When transfected into a cell line (psi 2) expressing complementary viral gene functions, G418-resistant (Neor) cells containing either of these vector DNAs produced high titers of transforming viruses. Analysis of proteins produced in cells containing the vector lacking gag gene sequences showed that gP180gag-fms was not synthesized, whereas normal levels of both immature gp120v-fms and mature gp140v-fms were detected. The glycoprotein was efficiently transported to the cell surface, and it retained wild-type tyrosine kinase activity. We conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180gag-fms is mediated by signal peptidase and that the amino termini of gp140v-fms and the c-fms gene product are identical.  相似文献   

6.
When human immunodeficiency virus type 1 envelope glycoproteins were expressed in 293 cells by using a recombinant adenovirus expression vector, the envelope precursor (gp160) was initially glycosylated by cotranslational addition of N-linked high-mannose oligosaccharide units to the protein backbone and then cleaved to gp120 and gp41. The subunits gp120 and gp41 were then further modified by the addition of fucose, galactose, and sialic acid, resulting in glycoproteins containing a mixture of hybrid and complex oligosaccharide side chains. A fraction of glycosylated gp160 that escaped cleavage was further modified by the terminal addition of fucose and galactose, but the addition of sialic acid did not occur, consistent with the notion that it is compartmentalized separately from the gp120 envelope protein. Processing and transport of gp160 were blocked by the monovalent ionophore monensin, which at high concentrations (25 microM and above) was a potent inhibitor of the endoproteolytic cleavage of gp160; at lower concentrations (1 to 10 microM), it selectively blocked the secondary glycosylation steps so that smaller products were produced. Monensin (1 microM) treatment also resulted in a reduction in syncytium formation, which was observed when recombinant infected cells were cocultivated with CD4-bearing HeLa cells. The infectivity of human immunodeficiency virus type 1 was also reduced by monensin treatment, a decrease that may be due to incompletely glycosylated forms of gp120 that have a lower affinity for the CD4 receptor.  相似文献   

7.
Transmembrane orientation of glycoproteins encoded by the v-fms oncogene   总被引:23,自引:0,他引:23  
The retroviral oncogene v-fms encodes a glycoprotein whose transport to the plasma membrane is required for transformation. Tryptic digestion of microsomes from transformed cells yielded membrane-protected amino-terminal fragments 40 kd smaller than intact molecules. These fragments were glycosylated, and they included v-fms-coded epitopes expressed at the cell surface. Deletion of the predicted membrane-spanning peptide generated polypeptides that were completely sequestered within microsomes. The mutant glycoproteins acquired more asparagine-linked oligosaccharide chains than did wild-type molecules, lacked kinase activity in vitro, were not transported to the cell surface, and had no transforming activity. Thus, the membrane-spanning segment in the middle of the glycoprotein interrupts translocation of nascent chains into the endoplasmic reticulum, ultimately orienting the amino-terminal domain outside the cell and the carboxy-terminal kinase domain in the cytoplasm. These topological features are similar to those of several growth factor receptors, suggesting that v-fms transforms cells through modified receptor-mediated signals.  相似文献   

8.
The Susan McDonough strain of feline sarcoma virus contains an oncogene, v-fms, which is capable of transforming fibroblasts in vitro. The mature protein product of the v-fms gene (gp140fms) is found on the surface of transformed cells; this glycoprotein has external, transmembrane, and cytoplasmic domains. To assess the functional role of these domains in transformation, we constructed a series of nine linker insertion mutations throughout the v-fms gene by using a dodecameric BamHI linker. The biological effects of these mutations on the function and intracellular localization of v-fms-encoded proteins were determined by transfecting the mutated DNA into Rat-2 cells. Most of the mutations within the external domain of the v-fms-encoded protein eliminated focus formation on Rat-2 cells; three of these mutations interfered with the glycosylation of the v-fms protein and interfered with formation of the mature gp140fms. One mutation in the external domain led to cell surface expression of v-fms protein even in the absence of complete glycosylational processing. Cell surface expression of mutated v-fms protein is probably necessary, but is not sufficient, for cell transformation since mutant v-fms protein was found on the surface of several nontransformed cell lines. Mutations that were introduced within the external domain had little effect on in vitro kinase activity, whereas mutations within the cytoplasmic domain all had strong inhibitory effects on this activity.  相似文献   

9.
Previous studies in many cell lines have shown that Brefeldin A (BFA) inhibits the forward movement of newly synthesized glycoconjugates by fusing the cis-, medial-, and trans-Golgi compartments with the rough endoplasmic reticulum. Studies on the oligosaccharide processing of individual glycoproteins have yielded confusing and incomplete results regarding the location of the block. Assuming that all glycoproteins with N-linked oligosaccharides follow the same endoplasmic reticulum to the Golgi pathway, a more complete picture on the location and nature of the block can be determined by analyzing N-linked oligosaccharides synthesized in the presence of BFA. In bovine pulmonary artery endothelial cells, BFA (0.1 microgram/ml) reversibly inhibits the secretion of greater than 95% of Tran35S and [3H]Man-labeled glycoproteins without affecting protein synthesis or N-linked glycosylation. In addition, BFA inhibits the synthesis and secretion of 35SO4-labeled oligosaccharides. Initial oligosaccharide trimming is uninhibited, but further processing is affected since the majority (65%) of the chains terminate only in beta-GlcNAc residues. Concomitantly, the proportion of [3H]Man-labeled N-linked anionic oligosaccharides is reduced from 60 to 20%, and the great majority of the charge is due to one sialic acid. The rate-limiting step for sialylation appears to be the branch selective addition of beta-Gal residues. The remaining charge is due to sulfate esters (0.6%) which normally account for greater than 10% of the anionic substituents. BFA also reduces the amount of phosphorylated chains by 80% and greatly diminishes further phosphodiester processing since the majority of these oligosaccharides (60%) contain a Man-6-PO4 residue in an acid-sensitive diester linkage. The addition of all polylactosamine chains, outer-branch fucose and terminal alpha-Gal residues are completely inhibited by BFA. Secretion, fucosylation, and sialylation are completely restored when BFA is removed, but the other modification steps are only partially restored. Our results indicate that addition of sulfate esters, terminal alpha-Gal residues, polylactosamine chains, outer-branch fucose residues, some initial phosphorylation, and most phosphodiester processing may occur beyond a compartment where some beta-Gal and sialic acid residues can be added. Essentially, all of the effects on oligosaccharide processing are partially or completely reversible.  相似文献   

10.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

11.
NRK cells transformed by the McDonough strain of feline sarcoma virus (SM-FeSV) were mutagenized by the use of 5'-azacytidine. Four cell lines expressing different transformation-defective phenotypes were isolated. Superinfection of these cell lines with simian sarcoma-associated virus (SSAV) led in three instances to the recovery of transforming virus particles carrying an intact fms gene. A nonconditional transformation-defective virus, designated td26-SM-FeSV (SSAV), was isolated from one of the cell lines. NRK cells infected with this mutant contained actin cables and fibronectin networks and exhibited normal cell morphology. Such cells formed only small colonies in soft agar and exhibited a mitogenic activity similar to that of noninfected cells. Cells infected with td26-SM-FeSV (SSAV) synthesized a gag-fms fusion glycoprotein (gp180gag-fms). This polypeptide was processed in the normal manner into the intracellular gp120v-fms and a transformation-defective gp140td-v-fms which was expressed at the surface of infected cells. This species had an increased electrophoretic mobility on polyacrylamide gels compared with the molecule from wild-type virus.gp140td-v-fms had endo-beta-N-acetylglucosaminidase H-resistant carbohydrate side chains. No tyrosine kinase activity was detectable in vivo in td26-SM-FeSV (SSAV)-infected cells even when the cells were treated with sodium orthovanadate. In vitro, fms molecules from td26-SM-FeSV (SSAV)-infected cells exhibited tyrosine kinase activity as determined by autophosphorylation and phosphorylation of exogenous (poly)Glu-Tyr. At low ATP concentrations (less than 5 microM) this in vitro tyrosine kinase activity was significantly reduced compared with that of the wild-type counterpart.  相似文献   

12.
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment.  相似文献   

13.
The role of tyrosine-specific phosphorylation in v-fms-mediated transformation was examined by immunoblotting techniques together with a high-affinity antibody that is specific for phosphotyrosine. This antiphosphotyrosine antibody detected phosphorylated tyrosine residues on the gp140v-fms molecule, but not gP180v-fms or gp120v-fms, in v-fms-transformed cells. This antibody also identified a number of cellular proteins that were either newly phosphorylated on tyrosine residues or showed enhanced phosphorylation on tyrosine residues as a result of v-fms transformation. However, the substrates of the v-fms-induced tyrosine kinase activity were not the characterized pp60v-src substrates. The phosphorylation of some of these cellular proteins and of the gp140fms molecule was found to correlate with the ability of v-fms/c-fms hybrids to transform cells. In addition, immunoblotting with the phosphotyrosine antibody allowed a comparison to be made of the substrates phosphorylated on tyrosine residues in various transformed cell lines. This study indicates that the pattern of tyrosine phosphorylation in v-fms-transformed cells is strikingly similar to that in v-sis-transformed cells.  相似文献   

14.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

15.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

16.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

17.
Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing.   总被引:23,自引:0,他引:23  
A D Elbein 《FASEB journal》1991,5(15):3055-3063
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms.  相似文献   

18.
The effect of glycosylational-processing inhibitors on the synthesis, cell surface expression, endocytosis, and transforming function of the v-fms oncogene protein (gp140fms) was examined in McDonough feline sarcoma virus-transformed Fischer rat embryo (SM-FRE) cells. Swainsonine (SW), a mannosidase II inhibitor, blocked complete processing, but an abnormal v-fms protein containing hybrid carbohydrate structures was expressed on the cell surface. SW-treated SM-FRE cells retained the transformed phenotype. In contrast, two glucosidase I inhibitors (castanospermine [CA] and N-methyl-1-deoxynojirimycin [MdN]) blocked carbohydrate remodeling at an early stage within the endoplasmic reticulum and prevented cell surface expression of v-fms proteins. CA-treated SM-FRE cells reverted to the normal phenotype. Neither SW, CA, nor MdN affected either endocytosis or the tyrosine kinase activity associated with the v-fms gene product in vitro. These results demonstrate the necessity of carbohydrate processing for cell surface expression of the v-fms gene product and illustrate the unique ability to modulate the transformed state of SM-FRE cells with the glycosylational-processing inhibitors CA and MdN.  相似文献   

19.
As part of their posttranslational maturation process, newly synthesized glycoproteins that contain N-linked oligosaccharide side chains pass through the Golgi apparatus, where some of their oligosaccharides become modified by carbohydrate processing reactions. In this paper, we report the presence of Golgi-localized enzymes in plant cells (Phaseolus vulgaris cotyledons) that transfer GlcNAc, fucosyl, and xylosyl residues to the oligosaccharide side chains of glycoproteins. All three enzyme activities are involved in the transformation of high mannose side chains into complex glycans. As judged by acceptor specificity studies, at least two GlcNAc residues can be added to the nonreducing side of high mannose oligosaccharides, which have been trimmed by α-mannosidase(s). A Man5(GlcNAc)2-peptide serves as the acceptor for the first GlcNAc added. The second GlcNAc can be added only after the prior removal of two additional mannose residues, ultimately yielding (GlcNAc)2Man3(GlcNAc)2-peptide. Fucosyltransferase can transfer fucose to GlcNAcMan5(GlcNAc)2Asn, GlcNAcMan3(GlcNAc)2Asn, and (GlcNAc)2Man3(GlcNAc)2Asn; xylosyltransferase exhibits significant activity toward the latter two substrates only. These results suggest an overlapping sequence of oligosaccharide modification in the Golgi apparatus that, in regard to GlcNAc and fucose additions, is analogous to pathways of oligosaccharide processing reported for animal cells. To our knowledge, this is the first report characterizing a xylosyltransferase involved in N-linked oligosaccharide modification, an activity that is apparently absent in most animal cells.  相似文献   

20.
Varicella-zoster virus specifies the formation of several glycoproteins, including the preponderant gp98-gp62 glycoprotein complex in the outer membranes of virus-infected cells. These viral glycoproteins are recognized and precipitated by a previously described monoclonal antibody designated monoclone 3B3. When an immunoblot analysis was performed, only gp98 was reactive with monoclone 3B3 antibody; likewise, titration in the presence of increased concentrations of sodium dodecyl sulfate during antigen-antibody incubations caused selective precipitation of gp98 but not gp62. Further structural analyses of gp98 were performed by using the glycosidases endo-beta-N-acetylglucosaminidase H (endoglycosidase H) and neuraminidase and two inhibitors of glycosylation (tunicamycin and monensin). In addition to gp98, antibody 3B3 reacted with several intermediate products, including gp90, gp88, gp81, and a nonglycosylated polypeptide, p73. Since gp98 was completely resistant to digestion with endoglycosidase H, it contained only complex carbohydrate moieties; conversely, gp81 contained mainly high-mannose residues. Polypeptide p73 was immunodetected in the presence of tunicamycin and designated as a nascent recipient of N-linked sugars, whereas gp88 was considered to contain O-linked oligosaccharides because its synthesis was not affected by tunicamycin. The ionophore monensin inhibited production of mature gp98, but other intermediate forms, including gp90, were detected. Since the latter product was similar in molecular weight to the desialated form of gp98, one effect of monensin treatment of varicella-zoster virus-infected cells was to block the addition of N-acetylneuraminic acid. Monensin also blocked insertion of gp98 into the plasma membrane and, as determined by electron microscopy, inhibited envelopment of the nucleocapsid and its transport within the cytoplasm. On the basis of this study, we reached the following conclusions: the primary antibody 3B3-binding epitope is located on gp98, gp98 is a mature product of viral glycoprotein processing, gp98 contains both N-linked and O-linked oligosaccharide side chains, gp90 is the desialated penultimate form of gp98, gp88 is an O-linked intermediate of gp98, gp81 is the high-mannose intermediate of gp98, and p73 is the unglycosylated precursor of gp98.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号