首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When living cells of Nitella are exposed to an acetate buffer solution until the pH value of the sap is decreased and subsequently placed in a solution of brilliant cresyl blue, the rate of penetration of dye into the vacuole is found to decrease in the majority of cases, and increase in other cases, as compared with the control cells which are transferred to the dye solution directly from tap water. This decrease in the rate is not due to the lowering of the pH value of the solution just outside the cell wall, as a result of diffusion of acetic acid from the cell when cells are removed from the buffer solution and placed in the dye solution, because the relative amount of decrease (as compared with the control) is the same whether the external solution is stirred or not. Such a decrease in the rate may be brought about without a change in the pH value of the sap if the cells are placed in the dye solution after exposure to a phosphate buffer solution in which the pH value of the sap remains normal. The rate of penetration of dye is then found to decrease. The extent of this decrease is the greater the lower the pH value of the solution. It is found that hydrochloric acid and boric acid have no effect while phosphoric acid has an inhibiting effect at pH 4.8 on stirring. Experiments with neutral salt solutions indicate that a direct effect on the cell (decreasing penetration) is due to monovalent base cations, while there is no such effect directly on the dye. It is assumed that the effect of the phosphate and acetate buffer solutions on the cell, decreasing the rate of penetration, is due (1) to the penetration of these acids into the protoplasm as undissociated molecules, which dissociate upon entrance and lower the pH value of the protoplasm or to their action on the surface of the protoplasm, (2) to the effect of base cations on the protoplasm (either at the surface or in the interior), and (3) possibly to the effect of certain anions. In this case the action of the buffer solution is not due to its hydrogen ions. In the case of living cells of Valonia under the same experimental conditions as Nitella it is found that the rate of penetration of dye decreases when the pH value of the sap increases in presence of NH3, and also when the pH value of the sap is decreased in the presence of acetic acid. Such a decrease may be brought about even when the cells are previously exposed to sea water containing HCl, in which the pH value of the sap remains normal.  相似文献   

2.
When living cells of Nitella are first exposed to (1) phosphate buffer mixture, or (2) phosphoric acid, or (3) hydrochloric acid, or (4) sodium chloride, or (5) sodium borate, and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, the rate of penetration of the dye into the vacuole is decreased as compared with the rate in the case of cells transferred directly from tap water to the same dye solution. When cells exposed to any one of these solutions are placed in the dye solution made up with phosphate buffer solution at pH 7.85, the rate of penetration of dye into the vacuole is the same as the rate in the case of cells transferred from the tap water to the same dye solution. It is probable that this removal of the inhibiting effect is due primarily to the presence of certain concentration of sodium and potassium ions in the phosphate buffer solution. If a sufficient concentration of sodium ions is added to the dye made up with a borate buffer mixture the inhibiting effect is removed just as it is in the case of the dye made up with the phosphate buffer mixture. The inhibiting effect of some of these substances is found to be removed by the dye containing a sufficient concentration of bivalent cations, or by washing the cells with salts of bivalent cations. The inhibiting effect and its removal are discussed from a theoretical standpoint.  相似文献   

3.
The effect of various substances on living cells may be advantageously studied by exposing them to such substances and observing their subsequent behavior in solutions of a basic dye, brilliant cresyl blue. The rate of penetration of the basic dye, brilliant cresyl blue, is decreased when cells are exposed to salts with monovalent cations before they are placed in the dye solution (made up with borate buffer mixture). This inhibiting effect is assumed to be due to the effect of the salts on the protoplasm. This effect is not readily reversible when cells are transferred to distilled water, but it is removed by salts with bivalent or trivalent cations. In some cases it disappears in dye made up with phosphate buffer mixture, or with borate buffer mixture at the pH value in which the borax predominates, and in the case of NaCl it disappears in dye containing NaCl. No inhibiting effect is seen when cells are exposed to NaCl solution containing MgCl2 before they are placed in the dye solution. The rate of penetration of dye is not decreased when cells are previously exposed to salts with bivalent and trivalent cations. The rate is slightly increased when cells are placed in the dye solution containing a salt with monovalent cation and probably with bivalent or trivalent cations. In the case of the bivalent and trivalent salts the increase is so slight that it may be negligible.  相似文献   

4.
Glass electrode measurements of the pH value of the sap of cells of Nitella show that azure B in the form of free base penetrates the vacuoles and raises the pH value of the sap to about the same degree as the free base of the dye added to the sap in vitro, but the dye salt dissolved in the sap does not alter the pH value of the sap. It is concluded that the dye penetrates the vacuoles chiefly in the form of free base and not as salt. The dye from methylene blue solution containing azure B free base as impurity penetrates and accumulates in the vacuole. This dye must be azure B in the form of free base, since it raises the pH value of the sap to about the same extent as the free base of azure B dissolved in the sap in vitro. The dye absorbed by the chloroform from methylene blue solution behaves like the dye penetrating the vacuole. These results confirm those of spectrophotometric analysis previously published. Crystal violet exists only in one form between pH 5 and pH 9.2, and does not alter the pH value of the sap at the concentrations used. It does not penetrate readily unless cells are injured. A theory of "multiple partition coefficients" is described which explains the mechanism of the behavior of living cells to these dyes. When the protoplasm is squeezed into the sap, the pH value of the mixture is higher than that of the pure sap. The behavior of such a mixture to the dye is very much like that of the sap except that with azure B and methylene blue the rise in the pH value of such a mixture is not so pronounced as with sap when the dye penetrates into the vacuoles. Spectrophotometric measurements show that the dye which penetrates from methylene blue solution has a primary absorption maximum at 653 to 655 mµ (i.e., is a mixture of azure B and methylene blue, with preponderance of azure B) whether we take the sap alone or the sap plus protoplasm. These results confirm those previously obtained with spectrophotometric measurements.  相似文献   

5.
Glass electrode measurements of the pH value of the sap of Nitella show that cresyl blue in form of free base penetrates the vacuoles and raises pH value of the sap to about the same degree as the free base of the dye added to the sap in vitro, while the dye salt dissolved in the sap does not alter its pH value. It is proved conclusively that the increase in the pH value of the sap is due only to the presence of the dye and not to some other alkaline substance. Spectrophotometric measurements show that the dye which penetrates the vacuole is chiefly cresyl blue. When the protoplasm is squeezed into the sap, the pH value of the sap is higher than that of the pure sap. Such a mixture behaves very much like the sap in respect to the dye.  相似文献   

6.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

7.
1. Chemical examination of the cell sap of Nitella showed that the concentrations of all the principal inorganic elements, K, SO4, Ca, Mg, PO4, Cl, and Na, were very much higher than in the water in which the plants were growing. 2. Conductivity measurements and other considerations lead to the conclusion that all or nearly all of the inorganic elements present in the cell sap exist in ionic state. 3. The insoluble or combined elements found in the cell wall or protoplasm included Ca, Mg, S, Si, Fe, and Al. No potassium was present in insoluble form. Calcium was predominant. 4. The hydrogen ion concentration of healthy cells was found to be approximately constant, at pH 5.2. This value was not changed even when the outside solution varied from pH 5.0 to 9.0. 5. The penetration of NO3 ion into the cell sap from dilute solutions was definitely influenced by the hydrogen ion concentration of the solution. Penetration was much more rapid from a slightly acid solution than from an alkaline one. It is possible that the NO3 forms a combination with some constituent of the cell wall or of the protoplasm. 6. The exosmosis of chlorine from Nitella cells was found to be a delicate test for injury or altered permeability. 7. Dilute solutions of ammonium salts caused the reaction of the cell sap to increase its pH value. This change was accompanied by injury and exosmosis of chlorine. 8. Apparently the penetration of ions into the cell may take place from a solution of low concentration into a solution of higher concentration. 9. Various comparisons with higher plants are drawn, with reference to buffer systems, solubility of potassium, removal of nitrate from solution, etc.  相似文献   

8.
Growth and chlorophyll synthesis by the green alga Golenkinia cease after approximately 60-hr incubation in 0.01 M sodium acetate. These effects are immediately preceded by a rapid rise of the pH of the medium to 8.6–8.8 due to acetate uptake. The pH kinetics are due to a gradual loss of the phosphate buffer, not to the induction or activation of acetate assimilatory enzymes. However, neither high pH nor sodium acetate alone is sufficient to inhibit cell division and bleach the algae; both must be present. Additional experiments support the hypothesis that acetate alters the cells so that they become sensitive to high concentrations of OH? ions.  相似文献   

9.
Summary Using a glutaraldehyde-fixed mouse neuromuscular junction, a fine precipitate of copper thiocholine was obtained with Koelle's medium prepared by a mixture of phosphate buffer (pH 5.6–5.9) and copper glycine solution (strongly acidic). The final pHs of these incubation media were very low, being situated between 3.8 and 4.2, respectively. It is well known that phosphate buffer, at such a low pH value, has no buffering effect on the acetic acid of enzymatic hydrolysis. This probably caused a sharp drop of the pH value in the vicinity of the enzymatic site and allowed a fine localization of copper thiocholine, the precipitation of which is pH dependent. Furthermore, the osmification of copper thiocholine in the same phosphate buffer provided a finely localized electron dense product. The chemical nature of the osmified copper thiocholine is discussed.  相似文献   

10.
Experiments on the exit of brilliant cresyl blue from the living cells of Nitella, in solutions of varying external pH values containing no dye, confirm the theory that the relation of the dye in the sap to that in the external solution depends on the fact that the dye exists in two forms, one of which (DB) can pass through the protoplasm while the other (DS) passes only slightly. DB increases (by transformation of DS to DB) with an increase in the pH value, and is soluble in substances like chloroform and benzene. DS increases with decrease in pH value and is insoluble (or nearly so) in chloroform and benzene. The rate of exit of the dye increases as the external pH value decreases. This may be explained on the ground that DB as it comes out of the cell is partly changed to DS, the amount transformed increasing as the pH value decreases. The rate of exit of the dye is increased when the pH value of the sap is increased by penetration of NH3.  相似文献   

11.
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský''s polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.  相似文献   

12.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages.  相似文献   

13.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylenediaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages.  相似文献   

14.
《Biotechnic & histochemistry》2013,88(5-6):247-252
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages.  相似文献   

15.
THE ENUMERATION OF LACTOBACILLI ON GRASS AND IN SILAGE   总被引:1,自引:1,他引:0  
SUMMARY: For the enumeration of lactobacilli on grass and in silage the following medium has shown promise: peptone, meat extract and glucose, 10 g. each; tomato extract, 200 ml.; yeast autolysate, 50 ml.; Tween 80, 0.5 ml.; agar, 15 g., in a final volume of 1 1. and containing acetic acid/sodium acetate buffer in 0.2M concentration; pH 5–4. The medium was adjusted to pH 5–4 before sterilization and the requisite amount of concentrated pH 5.4 acetate buffer added just before plating. Double laver plates were used.
The only other silage organisms which in this medium formed colonies comparable in size with those of lactobacilli were heterofermentative streptococci and a micrococcus.  相似文献   

16.
The vacuolar surface of Nitella is covered with a non-aqueous film too thin to be visible as a separate membrane. The motion of the protoplasm may subject this film to a good deal of mechanical disturbance. Apparently this does not rupture the film for no dye escapes into the protoplasm as the result of such disturbance when the vacuolar sap is deeply stained with neutral red or brilliant cresyl blue. When the deeply stained central vacuole breaks up into several smaller vacuoles, leaving the outer protoplasmic surface in its normal position, there is no evidence of the escape of dye into the protoplasm through the film surrounding the vacuole.  相似文献   

17.
When the living cells of Nitella are placed in a solution of brilliant cresyl blue containing NH4Cl, the rate of accumulation of the dye in the sap is found to be lower than when the cells are placed in a solution of dye containing no NH4Cl and this may occur without any increase in the pH value of the cell sap. This decrease is found to be primarily due to the presence of NH3 in the sap and seems not to exist where NH3 is present only in the external solution at the concentration used.  相似文献   

18.
The effects of lead on the uptake and release of gamma-[3H]aminobutyric acid [( 3H]GABA) from rat brain slices were examined in solutions buffered with Tris-HCl, sodium phosphate, and sodium bicarbonate. Lead acetate (10-250 microM) inhibited uptake and potassium-stimulated release and facilitated spontaneous efflux only in solutions buffered with Tris-HCl. Calcium-independent binding of [3H]GABA was unaffected by lead acetate (1-100 microM) in Tris-citrate buffer but was significantly inhibited by 3 microM lead acetate in Tris-HCl solution. At the rat soleus neuromuscular junction, lead caused a dose-dependent reduction of end-plate potential amplitude at concentrations of 10-100 microM lead acetate in HEPES-buffered solution but had no effect at these concentrations in phosphate-buffered solution. Stability constants of lead complexes indicate that buffers containing carbonate and phosphate are unlikely to contain a significant concentration of Pb2+, as complexing by these anions would reduce the availability of free Pb2+. This study indicates that the choice of buffer is important when investigating the effects of lead on biological systems and that negative findings may result from the use of inappropriate buffers. It also has important clinical implications suggesting that some effects of lead poisoning may result from its ability to affect neurotransmitter systems directly and that local changes in pH and complexing anion concentrations in the CNS may influence its biological availability and, hence, variable biological responses.  相似文献   

19.
When cells of Nitella are placed in buffer solutions at pH 9, there is a very slow and gradual increase in the pH of the sap from pH 5.6 to 6.4 (when death of the cells takes place). If the living cells are placed in 0.002 per cent dye solutions of brilliant cresyl blue at different pH values (from pH 6.6 to pH 9), it is found that the rate of penetration of the dye, and the final equilibrium attained, increases with increase in pH value, which can be attributed to an increase in the active protein (or other amphoteric electrolyte) in the cell which can combine with the dye.  相似文献   

20.
The rate of diffusion through the non-aqueous layer of the protoplasm depends largely on the partition coefficients mentioned above. Since these cannot be determined we have employed an artificial system in which chloroform is used in place of the non-aqueous layer of the protoplasm. The partition coefficients may be roughly determined by shaking up the aqueous solutions with chloroform and analyzing with the spectrophotometer (which is necessary with methylene blue because we are dealing with mixtures). This will show what dyes may be expected to pass through the protoplasm into the vacuole in case it behaves like the artificial system. From these results we may conclude that the artificial system and the living cell act almost alike toward methylene blue and azure B, which supports the notion of non-aqueous layers in the protoplasm. There is a close resemblance between Valonia and the artificial system in their behavior toward these dyes at pH 9.5. In the case of Nitella, on the other hand, with methylene blue solution at pH 9.2 the sap in the artificial system takes up relatively more azure B (absorption maximum at 650 mµ) than the vacuole of the living cell (655 mµ). But both take up azure B much more rapidly than methylene blue. A comparison cannot be made between the behavior of the artificial system and that of the living cell at pH 5.5 since in the latter case there arises a question of injury to cells before enough dye is collected in the sap for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号