首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Here, we present a study of the Pipistrellus pipistrellus species complex, a highly diversified bat group with a radiation centre in the Mediterranean biodiversity hotspot. The study sample comprised 583 animals from 118 localities representatively covering the bats' range in the western Palearctic. We used fast-evolving markers (the mitochondrial D-loop sequence and 11 nuclear microsatellites) to describe the phylogeography, demography and population structure of this model taxon and address details of its diversification. The overall pattern within this group includes a mosaic of phylogenetically basal, often morphologically distant, relatively small and mostly allopatric demes in the Mediterranean Basin, as well as two sympatric sibling species in the large continental part of the range. The southern populations exhibit constant size, whereas northern populations show a demographic trend of growth associated with range expansion during the Pleistocene climate oscillations. There is evidence of isolation by distance and female philopatry in P. pipistrellus sensu stricto. Although the northern populations are reproductively isolated, we detected introgression events among several Mediterranean lineages. This pattern implies incomplete establishment of reproductive isolating mechanisms in these populations as well as the existence of a past reinforcement stage in the continental siblings. The occurrence of reticulations in the radiation centre among morphologically and ecologically derived relict demes suggests that adaptive unequal gene exchange within hybridizing populations could play a role in speciation and adaptive radiation within this group.  相似文献   

2.
We describe the first set of ten microsatellite markers isolated in Pipistrellus abramus. The number of alleles per locus ranged from 7 to 13. The observed and expected heterozygosities values ranged from 0.486 to 0.971 and from 0.752 to 0.876, respectively. Three loci revealed significant departure from Hardy–Weinberg equilibrium and no linkage disequilibrium was found between loci pairs. These informative microsatellite markers will be a powerful molecular tool for studying the population genetic structure of P. abramus, as well as other species of this genus.  相似文献   

3.
Aim The Mediterranean Basin is a centre of radiation for numerous species groups. To increase our understanding of the mechanisms underlying speciation and radiation events in this region, we assessed the phenotypic variability within the Pipistrellus pipistrellus–pygmaeus–hanaki species complex. Although bats form the second largest mammalian order, studies of insular evolution in this group are scarce. We approached this problem from a microevolutionary perspective and tested for the recurrence of the insular syndrome. Location The Mediterranean Basin, with a special focus on isolated populations from Corsica, the Maghreb, Cyprus, Cyrenaica and Crete. Methods Phenotypic variability was assessed by cranial morphometrics using the coordinates of 41 3D landmarks and associated geometric‐morphometric methods. We analysed 125 specimens representing all of the lineages in the species complex. Differences between taxa and between insular and continental populations in cranial size, shape, form and allometries were tested using analyses of variance and visualized using boxplots and canonical variate analysis. Relationships between molecular data from a previous study (cytochrome b sequences) and morphometric data were tested with co‐inertia analyses (RV test) and multivariate regressions. Results The three species were relatively well differentiated in cranial size and shape, and each species showed a significant amount of inter‐population variability. Comparisons of pairs of insular versus continental populations revealed heterogeneities in cranial patterns among island phenotypes, suggesting no recurrent insular syndrome. Molecular and phenotypic traits were correlated, except for molecular and lateral cranium shape. Main conclusions The Pipistrellus pipistrellus pygmaeus hanaki species complex exhibits phenotypic variability as a result of the fragmentation of its distribution (especially on islands), its phylogenetic and phylogeographic history and, most probably, other evolutionary factors that were not investigated in this study. We found no recurrent pattern of evolution on islands, indicating that site‐specific factors play a prevailing role on Mediterranean islands. The correlation between molecular and phenotypic data is incomplete, suggesting that factors other than phylogenetic relationships, potentially connected with feeding ecology, have played a role in shaping cranial morphology in this species complex.  相似文献   

4.
Summary A pipistrelle bat (Pipistrellus pipistrellus) population in southernmost Sweden was studied for eight consecutive breeding seasons by means of bat boxes. Survival rates were calculated using Cormack's stochastic technique. The mean survival rate of adult females exceeded that of territorial males. Annual variations in survival rates were most evident in males, low rates being observed in years following wet autumns. Energy constraints imposed on territorial males by the mating system, a resource defence polygyny, were assumed to account for the differences obtained in survival rates between the sexes.  相似文献   

5.
Fecal samples from 12 Pipistrellus kuhlii captured at Shagrah, Saudi Arabia, were examined for coccidia and three (25%) found to harbor a undescribed eimerian, herein described as Eimeria pipistrellus n. sp. Sporulated oocysts were subspherical, 24.8 x 23.2 (22-27 x 20-25) microns, with a bilayered and smooth wall. The micropyle was absent, but a large oocyst residuum and a single polar granule were present. Sporocysts were ovoid, 11.6 x 8.3 (10.5-13 x 7.5-9) microns, with a prominent Stieda body, but without a substiedal body; sporozoites lay head to tail in sporocysts and contained one large posterior refractile body. Eimeria pipistrellus n. sp. is the 3rd species of the genus Eimeria found from bats of the genus Pipistrellus.  相似文献   

6.
To better understand the evolutionary history of the genus Centaurium and its relationship to other genera of the subtribe Chironiinae (Gentianaceae: Chironieae), molecular analyses were performed using 80 nuclear ribosomal ITS and 76 chloroplast trnLF (both the trnL UAA intron and the trnL-F spacer) sequences. In addition, morphological, palynological, and phytochemical characters were included to a combined data matrix to detect possible non-molecular synapomorphies. Phylogenetic reconstructions support the monophyly of the Chironiinae and an age estimate of ca. 22 million years for the subtribe. Conversely, both molecular data sets reveal a polyphyletic Centaurium, with four well-supported main clades hereafter treated as separate genera. The primarily Mediterranean Centaurium s.s. is closely related to southern African endemics Chironia and Orphium, and to the Chilean species Centaurium cachanlahuen. The resurrected Mexican and Central American genus Gyrandra is closely related to Sabatia (from eastern North America). Lastly, the monospecific genus Exaculum (Mediterranean) forms a monophyletic group together with the two new genera: Schenkia (Mediterranean and Australian species) and Zeltnera (all other indigenous American centauries). Several biogeographical patterns can be inferred for this group, supporting a Mediterranean origin followed by dispersals to (1) North America, Central America, and South America, (2) southern Africa (including the Cape region), and (3) Australia and Pacific Islands.  相似文献   

7.
Distributions of Daubenton's bat (Myotis daubentonii), common pipistrelle, (Pipistrellus pipistrellus), and soprano pipistrelle (Pipistrellus pygmaeus) were investigated along and altitudinal gradient of the Lledr River, Conwy, North Wales, and presence assessed in relation to the water surface condition, presence/absence of bank‐side trees, and elevation. Ultrasound recordings of bats made on timed transects in summer 1999 were used to quantify habitat usage. All species significantly preferred smooth water sections of the river with trees on either one or both banks; P. pygmaeus also preferred smooth water with no trees. Bats avoided rough and cluttered water areas, as rapids may generate high‐frequency echolocation‐interfering noise and cluttered areas present obstacles to flight. In lower river regions, detections of bats reflected the proportion of suitable habitat available. At higher elevations, sufficient habitat was available; however, bats were likely restricted due to other factors such as a less predictable food source. This study emphasizes the importance of riparian habitat, bank‐side trees, and smooth water as foraging habitat for bats in marginal upland areas until a certain elevation, beyond which bats in these areas likely cease to forage. These small‐scale altitudinal differences in habitat selection should be factored in when designing future bat distribution studies and taken into consideration by conservation planners when reviewing habitat requirements of these species in Welsh river valleys, and elsewhere within the United Kingdom.  相似文献   

8.
Arabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics. We have examined patterns of adaptive flowering time variation in the outcrossing, perennial A. lyrata. In addition, we examine the distribution of variation at marker genes in populations form North America and Europe. The probability of flowering in this species differs between southern and northern populations. Northern populations are much less likely to flower in short than in long days. A significant daylength by region interaction shows that the northern and southern populations respond differently to the daylength. The timing of flowering also differs between populations, and is made shorter by long days, and in some populations, by vernalization. North American and European populations show consistent genetic differentiation over microsatellite and isozyme loci and alcohol dehydrogenase sequences. Thus, the patterns of variation are quite different from those in A. thaliana, where flowering time differences show little relationship to latitude of origin and the genealogical trees of accessions vary depending on the genomic region studied. The genetic architecture of adaptation can be compared in these species with different life histories.  相似文献   

9.
Aim Bats communicate by emitting social calls, and these often elicit reactions in conspecifics. Many such vocalizations are species‐specific so that unambiguous signals can be transmitted and interpreted by conspecifics. In species‐rich assemblages, evolutionary pressures might prompt interspecific diversification of call structure so that communication with heterospecifics is avoided. In species‐poor island communities, where no risk of miscommunication occurs, stabilizing selection should prevail and preserve call structure and function. Call structure in island bats might be inherited from colonizers from the mainland and be maintained with little change in the absence of selection from heterospecifics. To test this hypothesis we studied Pipistrellus maderensis, an insular taxon occurring on the Madeira Archipelago, the Canary Islands and the Azores. It is closely related to one of the most widespread European pipistrelles, Pipistrellus kuhlii. Pipistrellus maderensis most probably evolved from a common ancestor shared with P. kuhlii, or from founders of that taxon that colonized the islands. We hypothesized that on Madeira Island, where no risk of ambiguous communication with heterospecifics exists, the structure and function of social calls should have been preserved by stabilizing selection. Echolocation calls, subject to different selection pressures, may instead show more pronounced differences between P. maderensis and P. kuhlii. Location Madeira Island (Portugal, Atlantic Ocean), central and southern Italy. Methods We recorded social and echolocation calls from allopatric populations of the two pipistrelles and explored interspecific differences in time and frequency characteristics. We also conducted playback experiments by broadcasting recordings of social calls from P. kuhlii and P. maderensis (taken respectively in peninsular Italy and on Madeira) and monitoring the bats’ responses. Results Social call structure showed a strong similarity between species, whereas echolocation calls were markedly different and exhibited a mean divergence of over 6 kHz in their frequency of maximum energy. On Madeira, P. maderensis significantly reduced flight activity when we broadcast P. kuhlii signals, as did P. kuhlii in Italy in response to P. maderensis calls. Main conclusions Reliable interpretation of social calls provides benefits to both the signaller and the receiver because signals help to optimize food exploitation at foraging sites. In the absence of closely related species that can emit similar calls, this advantage may have acted as a strong evolutionary pressure, stabilizing social call structure in P. maderensis in insular ecosystems with limited foraging resources.  相似文献   

10.
The lizard genus Liolaemus is endemic to temperate South America and includes 190 species. Liolaemus bibronii has a large geographic distribution and inhabits a great diversity of habitats, including the Monte, Steppe, and high Andean grassland environments. Liolaemus gracilis has a similar body size and shape to L. bibronii; the two are parapatrically distributed, and L. gracilis is also widely distributed. Here we use the mtDNA cytb sequence data of these two species to investigate lizard phylogeographic patterns in southern South America. L. bibronii is paraphyletic with respect to L. gracilis, Liolaemus ramirezae, Liolaemus robertmertensi and Liolaemus saxatilis; it is composed of many genetically different allopatric haploclades, some of which are reciprocally monophyletic. We also found evidence for introgression between L. bibronii and L. gracilis in the same area that introgression was hypothesized in the Liolaemus darwinii complex. We discuss the distribution of the major haploclades with inferences of their population histories, the concordance of these clades' distributions and histories with other lizard complexes studied with the same markers and methods, and taxonomic implications of these results.  相似文献   

11.
Echolocation behaviour and the structure of calls of Pipistrellus pygmaeus and Pipistrellus pipistrellus were studied by using a time expansion bat detector. Echolocation signals were recorded in the field in south-eastern Moravia and northern Bohemia (Czech Republic) and in an ad hoc experimental laboratory. For each of the species, multivariate analysis of variance (MANOVA) indicated significant differences in calls produced inside the experimental room and in the open. Paired t -tests and MANOVA were also used to reveal influences of interindividual contacts in each of the cryptic species on the spectral patterns of call variables. Differences were found in the spectral variables of echolocation calls of an individual flying in the room alone and in a group of conspecifics. The possibility that bats use their flexibility to avoid mutual disturbances of echolocation calls was tested. We found that bats flying in a group modify the parameters of their echolocation signals according to the presence of other individuals of the same species. These differences can indicate jamming avoidance and recognition of own echoes. However, they did not change the parameters if individuals of another species were present. Social calls are more numerous when bats fly in a mixed-species group than in a monospecific group.  相似文献   

12.
Sympatric distribution of two cryptic bat species across Europe   总被引:1,自引:0,他引:1  
The analysis of echolocation calls and mitochondrial DNA sequences recently revealed the existence of two cryptic bat species in Western Europe which were regarded as 'Pipistrellus pipistrellus' for more than 200 years. We now present data on acoustic and genetic characters across Europe including a novel genetic marker from the nuclear genome. Intraspecific variation of end frequencies of echolocation calls did not differ between geographic regions and only a little overlap existed between the two species. Nuclear and mitochondrial DNA sequences for the two species were highly divergent. No evidence was found for additional cryptic species in this group. With the exception of Scandinavia, both species occur across the whole of Europe and largely overlap in their range. The distribution of the species using echolocation calls at higher frequencies extends further north and the same species is also more common in the south along the Mediterranean Sea.  相似文献   

13.
The paper presents multiplex panels of polymorphic microsatellites for two closely related cryptic species Pipistrellus pipistrellus and Pipistrellus pygmaeus. We tested the cross‐species amplification of 34 microsatellite loci, originally developed for five vespertilionid bat species. Ten and nine polymorphic loci in P. pipistrellus (mean number of alleles per locus = 10.5) and P. pygmaeus (8.1), respectively, in three multiplex polymerase chain reactions per species were amplified. All loci can be analysed in a single fragment analysis and can be used as markers to the study of evolution and the ecology of structured populations of socially living bats.  相似文献   

14.
The geographic range and bloom frequency of the toxic dinoflagellate Alexandrium minutum and other members of the A. minutum group have been increasing over the past few decades. Some of these species are responsible for paralytic shellfish poisoning (PSP) outbreaks throughout the world. The origins of new toxic populations found in previously unaffected areas are typically not known due to a lack of reliable plankton records with sound species identifications and to the lack of a global genetic database. This paper provides the first comprehensive study of minutum-group morphology and phylogeny on a global scale, including 45 isolates from northern Europe, the Mediterranean, Asia, Australia and New Zealand.Neither the morphospecies Alexandrium lusitanicum nor A. angustitabulatum was recoverable morphologically, due to large variation within and among all minutum-group clonal strains in characters previously used to distinguish these species: the length:width of the anterior sulcal plate, shape of the 1′ plate, connection between the 1′ plate and the apical pore complex, and the presence of a ventral pore. DNA sequence data from the D1 to D2 region of the LSU rDNA also fail to recognize these species. Therefore, we recommend that all isolates previously designated as A. lusitanicum or A. angustitabulatum be redesignated as A. minutum. A. tamutum, A. insuetum, and A. andersonii are clearly different from A. minutum on the basis of both genetic and morphological data.A. minutum strains from Europe and Australia are closely related to one another, which may indicate an introduction from Europe to Australia given the long history of PSP in Europe and its recent occurrence in Australia. A minutum from New Zealand and Taiwan form a separate phylogenetic group. Most strains of A. minutum fit into one of these two groups, although there are a few outlying strains that merit further study and may represent new species. The results of this paper have greatly improved our ability to track the spread of A. minutum species and to understand the evolutionary relationships within the A. minutum group by correcting inaccurate taxonomy and providing a global genetic database.  相似文献   

15.
Long-eared bats of the genus Plecotus are widespread and common over most of the western Palaearctic. Based on recent molecular evidence, they proved to represent a complex of several cryptic species, with three new species being described from Europe in 2002. Evolutionary relationships among the different lineages are still fragmentary because of the limited geographic coverage of previous studies. Here we analyze Plecotus mitochondrial DNA sequences from the entire Mediterranean region and Atlantic Islands. Phylogenetic reconstructions group these western Palaearctic Plecotus into two major clades which split at least 5 Myr ago and that are each subdivided into further subgroups. An 'auritus group' includes the traditional P. auritus species and its sister taxon P. macrobullaris (=P. alpinus) plus related specimens from the Middle East. P. auritus and P. macrobullaris have broadly overlapping distributions in Europe, although the latter is apparently more restricted to mountain ranges. The other major clade, the 'austriacus group,' includes the European species P. austriacus and at least two other related taxa from North Africa (including P. teneriffae from the Canary Islands), the Balkans and Anatolia (P. kolombatovici). The sister species of this 'austriacus group' is P. balensis, an Ethiopian endemic. Phylogenetic reconstructions further suggest that P. austriacus reached Madeira during its relatively recent westward expansion through Europe, while the Canary Islands were colonized by a North African ancestor. Although colonization of the two groups of Atlantic Islands by Plecotus bats followed very distinct routes, neither involved lineages from the 'auritus group.' Furthermore, the Strait of Gibraltar perfectly segregates the distinct lineages, which confirms its key role as a geographic barrier. This study also stresses the biogeographical importance of the Mediterranean region, and particularly of North Africa, in understanding the evolution of the western Palaearctic biotas.  相似文献   

16.
We characterized the complete mitogenome of Pipistrellus coromandra (Indian pipistrelle) for comparative analysis of mitogenomes and for resolving the phylogenetic relationship of four tribes in the subfamily Vespertilioninae. The mitogenome size of P. coromandra was 17,153?bp, with a control region and a typical set of 37 mitochondrial genes. The nucleotide composition of the P. coromandra mitogenome showed an AT bias with a nucleotide composition of 33.5% A, 30.7% T, 13.3% G, and 22.5% C. The mitochondrial protein-coding genes in P. coromandra use the standard start codon (ATN), two stop codons (TAA and AGA), and two incomplete stop codons (TA- and T--). The intertribal relationship of four tribes was highly resolved from the phylogenetic analysis of mitogenome sequences.  相似文献   

17.
对日本伏翼的翼型、回声定位信号及晚间出飞时间进行研究。结果表明,日本伏翼的翼型具有高翼载、低翼展比和中等偏高的翼型特征。日本伏翼发出具有1 - 2 个谐波结构的调频型(FM)回声定位信号叫声,其叫声时程、主频率的平均值分别为3.26 ms 和56. 27 kHz,所有叫声特征参数,个体间变异系数CVb 比个体内变 异系数CVw 大。日本伏翼的晚间出飞时间具有明显月变化,与当地日落时间、气温呈现显著相关。通过与文献比较,发现日本伏翼的回声定位信号特征与录音状态、飞行生境有关;此外,晚间出飞时间存在一定的地理差异。本研究结果将为蝙蝠回声定位信号特征的种属特异性及其生境选择的进一步研究提供有用的信息。  相似文献   

18.
In Europe, southern peninsulas served as refugia during cold periods in the Pleistocene, acting both as centres of origin of endemisms and as sources from which formerly glaciated areas were recolonized during interglacial periods. Previous studies have revealed that within the main refugial areas, intraspecific lineages often survived in allopatric refugia. We analysed two mitochondrial markers (nad4, control region, approximately 1.4 kb) in 103 individuals representing the entire distribution of Lissotriton boscai, a newt endemic to the western Iberian Peninsula. We inferred the evolutionary history of the species through phylogenetic, phylogeographic and historical demographic analyses. The results revealed unexpected, deep levels of geographically structured genetic variability. We identified two main evolutionary lineages, each containing three well-supported clades. The first historical split involved populations from central-southwestern coastal Portugal and the ancestor of all the remaining populations around 5.8 million years ago. Both lineages were subsequently fragmented into different population groups between 2.5 and 1.2 million years ago. According to nested clade analysis, at lower hierarchical levels the patterns suggest restricted gene flow with isolation by distance, whereas at higher levels the clades exhibit signatures of contiguous range expansion. Bayesian Skyline Plots show recent bottlenecks, followed by demographic expansions in all lineages. The significant genetic structure found is consistent with long-term survival of populations in allopatric refugia, supporting the 'refugia-within-refugia' scenario for southern European peninsulas. The comparison of our results with other co-distributed species highlights the generality of this hypothesis for the Iberian herpetofauna and suggests that Mediterranean refuges had more relevance for the composition and distribution of present biodiversity patterns than currently acknowledged. We briefly discuss the taxonomic and conservation implications of our results.  相似文献   

19.
The genus Charybdis Speta (previously Urginea maritima agg.) was investigated karyologically and genetically throughout its geographic range in the Mediterranean. The different ploidy levels show a strong geographic pattern. Diploid populations are mainly found along the northern coast of Africa with C. pancration extending northwards from Tunisia to southern Italy. Tetraploid populations are most densely distributed in the eastern Mediterranean but are also found in North Africa, on the Balearic and Canary Islands. Hexaploid populations are restricted to the Iberian Peninsula and adjacent Morocco and Algeria. Chloroplast microsatellite data suggest that determination of ploidy levels alone is insufficient to adequately describe the existing populations. Especially the tetraploid and hexaploid populations exhibit additional genetic differentiation and geographic structuring. AFLP data indicate that tetraploid populations from southern Italy are of hybrid origin. Phylogenetic analysis further revealed that the genera Urginea Steinh. and Charybdis are not directly related to each other but have strong ties to genera from southern Africa. A possible colonization scenario of the Mediterranean via NW Africa and Iberia is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号