首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
d-Aspartate oxidase (DDO) and d-amino acid oxidase (DAO) are flavin adenine dinucleotide-containing flavoproteins that catalyze the oxidative deamination of d-amino acids. Unlike DAO, which acts on several neutral and basic d-amino acids, DDO is highly specific for acidic d-amino acids. Based on molecular modeling and simulated annealing docking analyses, a recombinant mouse DDO carrying two substitutions (Arg-216 to Leu and Arg-237 to Tyr) was generated (R216L-R237Y variant). This variant and two previously constructed single-point mutants of mouse DDO (R216L and R237Y variants) were characterized to investigate the role of Arg-216 and Arg-237 in the substrate specificity of mouse DDO. The R216L-R237Y and R216L variants acquired a broad specificity for several neutral and basic d-amino acids, and showed a considerable decrease in activity against acidic d-amino acids. The R237Y variant, however, did not show any additional specificity for neutral or basic d-amino acids and its activity against acidic d-amino acids was greatly reduced. The kinetic properties of these variants indicated that the Arg-216 residue is important for the catalytic activity and substrate specificity of mouse DDO. However, Arg-237 is, apparently, only marginally involved in substrate recognition, but is important for catalytic activity. Notably, the substrate specificity of the R216L-R237Y variant differed significantly from that of the R216L variant, suggesting that Arg-237 has subsidiary effects on substrate specificity. Additional experiments using several DDO and DAO inhibitors also suggested the involvement of Arg-216 in the substrate specificity and catalytic activity of mouse DDO and that Arg-237 is possibly involved in substrate recognition by this enzyme. Collectively, these results indicate that Arg-216 and Arg-237 play crucial and subsidiary role(s), respectively, in the substrate specificity of mouse DDO.  相似文献   

2.
The role of Ser-308 of murine D-aspartate oxidase (mDASPO), particularly its side chain hydroxyl group, was investigated through the use of site-specific mutational analysis of Ser-308. Recombinant mDASPO carrying a substitution of Gly, Ala, or Tyr for Ser-308 was generated, and fused to either His (His-mDASPO), or glutathione S-transferase, His, and S (GHS-mDASPO) at its N-terminus. Wild-type His-mDASPO or GHS-mDASPO or their mutant derivatives were expressed in Escherichia coli and purified by affinity chromatography. All purified recombinant proteins had functional DASPO activity. The Gly-308 and Ala-308 mutants had significantly higher catalytic efficiency towards D-Asp and N-methyl-D-Asp, and a higher affinity for flavin adenine dinucleotide (FAD) compared to the wild-type enzyme. The Tyr-308 mutant had lower catalytic efficiency and binding capacity. These results suggest that the side chain hydroxyl group of a critical residue of mDASPO, Ser-308, down-regulates enzymatic activity, substrate binding, and FAD binding. This study provides information on the active site of DASPO that will considerably enhance our understanding of the biological significance of this enzyme.  相似文献   

3.
Milkowski C  Baumert A  Strack D 《Planta》2000,211(6):883-886
A cDNA encoding a UDP-glucose:sinapate glucosyltransferase (SGT) that catalyzes the formation of 1-O-sinapoylglucose, was isolated from cDNA libraries constructed from immature seeds and young seedlings of rape (Brassica napus L.). The open reading frame encoded a protein of 497 amino acids with a calculated molecular mass of 55,970 Da and an isoelectric point of 6.36. The enzyme, functionally expressed in Escherichia coli, exhibited broad substrate specificity, glucosylating sinapate, cinnamate, ferulate, 4-coumarate and caffeate. Indole-3-acetate, 4-hydroxybenzoate and salicylate were not conjugated. The amino acid sequence of the SGT exhibited a distinct sequence identity to putative indole-3-acetate glucosyltransferases from Arabidopsis thaliana and a limonoid glucosyltransferase from Citrus unshiu, indicating that SGT belongs to a distinct subgroup of glucosyltransferases that catalyze the formation of 1-O-acylglucosides (β-acetal esters). Received: 14 July 2000 / Accepted: 8 August 2000  相似文献   

4.
Summary. Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5′-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5′-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5′-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A2A receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A1 receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5′-nucleotidase and on cellular damage. The adenosine formed from ecto-5′-nucleotidase stimulation preferentially acted on adenosine A2A receptor which is probably co-operating with the neurotoxicity induced by amino acids.  相似文献   

5.
Hirotani M  Kuroda R  Suzuki H  Yoshikawa T 《Planta》2000,210(6):1006-1013
 A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53 094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in  E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4′-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments. Received: 8 September 1999 / Accepted: 4 October 1999  相似文献   

6.
Summary. Glucocorticoid hormones enhance the reabsorptive capacity of filtered amino acids in rat kidney, as it was shown in previous in vivo clearance experiments. In the present study, the site of glucocorticoid action on neutral amino acid transport in superficial nephrons of rat kidney was investigated using in vivo micropuncture technique. Adult female Wistar rats were treated with dexamethasone (DEX), and fractional excretion of L-glutamine (L-Gln) and L-leucine (L-Leu) were determined and related to inulin after microinfusion into different nephron segments. DEX reduced fractional excretion of both neutral amino acids as a sign of enhanced reabsorptive capacity. The site of main DEX action on L-Leu reabsorption has been localized in the proximal straight tubule. However, in the case of L-Gln, the inhibition of γ-glutamyltranspeptidase (γ-GT) by administration of acivicin indicated the importance of this brush border enzyme in reduced L-Gln excretion. DEX enhanced γ-GT activity by tubular acidification. It can be presumed a DEX-inducible transport system for neutral amino acids mainly localized in proximal straight tubules of rat kidney. Received July 8, 1999  相似文献   

7.
Summary. The influence of nitric oxide synthase (NOS) activity on the KCl-evoked amino acid concentrations was investigated by in vivo microdialysis in the striatum in a rat model of excitotoxic lesion. Basal microdialysate levels of amino acids decreased during the quinolinic acid-induced neurodegeneration process, except for glutamine that increased initially and returned to control values 30 days after quinolinic acid exposure. KCl-evoked increase of extracellular amino acid concentration was reduced due to NOS activity in the striatum of both controls and lesioned animals, except for 120 days after quinolinic acid injection. These changes of amino acid concentrations in microdialysates correlated with the known biochemistry of the consecutive domineered cell types during the lesion process as revealed by histochemistry for NOS, NADPH-diaphorase, GFAP and isolectin B4. The present data provide direct evidence that NOS activity can modulate extracellular amino acid concentrations in the striatum not only under physiological conditions, but also during a pharmacologically induced lesion process and, thus, suggests that nitric oxide affects neurodegeneration via this pathway. Received October 20, 1999; Accepted February 25, 2000  相似文献   

8.
In order to test the biological importance of amino acids in the C-terminal quarter of aminoglycoside 3'-phosphotransferase II enzyme, seven of the highly conserved residues in this region, His-188, Asp-190, Asp-208, Gly-210, Arg-211, Asp-216 and Asp-220, were changed via site-directed mutagenesis. The phenotype of each mutant was compared to wildtype in terms of antibiotic susceptibilities and enzymatic activities. All of the substitutions either abolished or significantly reduced the resistance of the resulting strains to kanamycin, neomycin, butirosin, ribostamycin, paromomycin, gentamicin A, and G-418. Similarly, enzyme activities in crude extracts were substantially reduced for the mutant strains. Affinity of the enzyme for Mg+2-ATP decreased with His-188, Asp-190, Asp-216 and Asp-220 substitutions as revealed by Km measurements. Secondary structure analysis predicted that substitutions at the conserved residues caused severe conformational distortions at the corresponding regions of the protein.  相似文献   

9.
Summary. The premise that free amino acid or dipeptide based diets will resolve the nutritional inadequacy of formulated feeds for larval and juvenile fish and improve utilization of nitrogen in comparison to protein-based diets was tested in stomachless fish, common carp (Cyprinus carpio L.) larvae. We examined the postprandial whole body free amino acid (FAA) pool in fish that were offered a FAA mixture based diet for the duration of 2 or 4 weeks. We found that the total amount and all indispensable amino acids concentrations in the whole body decreased after a meal. We then fed juvenile carp with dietary amino acids provided in the FAA, dipeptide (PP), or protein (live feed organisms; brine shrimp Artemia salina nauplii, AS) forms. Histidine concentrations in the whole fish body increased in all dietary groups after feeding whereas all other indispensable amino acids decreased in FAA and PP groups in comparison to the AS group. Taurine appears to be the major osmotic pressure balancing free amino acid in larval freshwater fish which may indicate a conditional requirement. We present the first evidence in larval fish that in response to synthetic FAA and PP diets, the whole body indispensable free AA concentrations decreased after feeding. This study shows that amino acids given entirely as FAA or PP cannot sustain stomachless larval fish growth, and may result in depletion of body indispensable AA and most of dispensable AA. The understanding of these responses will determine necessary changes in diet formulations that prevent accelerated excretion of amino acids without protein synthesis.  相似文献   

10.
In the search for the essential functional domains of the large mechanosensitive ion channel (MscL) of E. coli, we have cloned several mutants of the mscL gene into a glutathione S-transferase fusion protein expression system. The resulting mutated MscL proteins had either amino acid additions, substitutions or deletions in the amphipathic N-terminal region, and/or deletions in the amphipathic central or hydrophilic C-terminal regions. Proteolytic digestion of the isolated fusion proteins by thrombin yielded virtually pure recombinant MscL proteins that were reconstituted into artificial liposomes and examined for function by the patch-clamp technique. The addition of amino acid residues to the N-terminus of the MscL did not affect channel activity, whereas N-terminal deletions or changes to the N-terminal amino acid sequence were poorly tolerated and resulted in channels exhibiting altered pressure sensitivity and gating. Deletion of 27 amino acids from the C-terminus resulted in MscL protein that formed channels similar to the wild-type, while deletion of 33 C-terminal amino acids extinguished channel activity. Similarly, deletion of the internal amphipathic region of the MscL abolished activity. In accordance with a recently proposed spatial model of the MscL, our results suggest that (i) the N-terminal portion participates in the channel activation by pressure, and (ii) the essential channel functions are associated with both, the putative central amphipathic α-helical portion of the protein and the six C-terminal residues RKKEEP forming a charge cluster following the putative M2 membrane spanning α-helix. Received: 25 September 1996/Revised: 21 November 1996  相似文献   

11.
Lohaus G  Moellers C 《Planta》2000,211(6):833-840
 In order to investigate the relationship between the amino acid concentration in the phloem sap of leaves and the protein content in seeds, two Brassica napus genotypes and one B. carinata genotype with low, medium and high seed protein contents were analyzed. Phloem sap was collected from the B. napus winter rapeseed breeding line DSV15 with 19% protein of dry weight in the seeds, the spring cultivar ‘Duplo’ with 25% protein in the seeds and from the B. carinata line BRA1151/90 with 39% protein in the seeds by using the aphid-stylet technique. The total amino acid contents measured in the phloem varied considerably among the three genotypes analysed, and correlated positively with their respective seed protein contents. The total amino acid-to-sucrose ratio was lowest in B. napus line DSV15 which had the lowest seed protein content and highest in the B. carinata line BRA1151/90 which had the highest seed protein content. The amino-N translocation in the phloem during the light period was about 2-fold higher in the B. carinata line BRA1151/90 than in the B. napus lines Dulpo and DSV15. Predominant amino acids in the phloem were glutamine and glutamate, followed by serine, aspartate, and threonine. The amino acid patterns in the leaves resembled those in the phloem, although their absolute concentrations were higher in the phloem than in the cytosol of mesophyll tissue. Furthermore, the concentration gradient of amino acids between the cytosol of mesophyll cells and the phloem was higher in the B. carinata line BRA1151/90 than in the B. napus lines Duplo and DSV15. These results lead to the conclusion that the phloem translocation of amino-N and the phloem loading process of amino acids are decisive factors for the protein content in the seeds of Brassica species. Received: 28 November 1999 / Accepted: 10 April 2000  相似文献   

12.
13.
Zhou XX  Wang YB  Pan YJ  Li WF 《Amino acids》2008,34(1):25-33
Summary. Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein. Authors’ addresses: Yuan-Jiang Pan, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Zhejiang University Road 38, Hangzhou 310027, China; Wei-Fen Li, Microbiology Division, College of Animal Science, Zhejiang University, Hangzhou 310029, China  相似文献   

14.
Sucrose synthase (SS), a key enzyme in plant carbohydrate metabolism, has recently been isolated from Anabaena sp. strain PCC 7119, and biochemically characterized; two forms (SS-I and SS-II) were detected (Porchia et al. 1999, Planta 210: 34–40). The present study describes the first isolation and characterization of a prokaryotic SS gene, susA, encoding SS-II from that strain of Anabaena. A 7 kbp DNA fragment containing an open reading frame (EMBL accession number AJ010639) with about 30–40% amino acid identity with plant SSs was isolated from an Anabaena subgenomic library. The putative SS gene was demonstrated to encode an SS protein by expression in Escherichia coli. The biochemical properties of the recombinant enzyme were identical to those of the enzyme purified from the cyanobacterial cells. The deduced amino acid sequence of the Anabaena SS diverged from every plant SS reported. The occurrence of SS in cyanobacteria of different taxonomic groups was investigated. The enzyme occurs in several filamentous nitrogen-fixing cyanobacteria but not in two species of unicellular, non-diazotrophic cyanobacteria. Received: 5 January 2000 / Accepted: 7 March 2000  相似文献   

15.
Summary. Mammalian hexokinase (HXK) is found at the outer mitochondrial membrane, exposed to mitochondrial oxygen- and nitrogen-radicals. Given the important role of this enzyme in metabolic pathways and diseases, the effect of S-nitrosoglutathione (GSNO) on HXK A structure and activity was studied. To focus on the catalytic domain, yeast HXK A was used because it has a significant homology to the mammalian domain that contains both the regulatory and catalytic sites. Biologically relevant [GSNO]/[HXK] caused a significant decrease in Vmax with glucose (but not with fructose), along with oxidation of 5 Met and nitration of 4 Tyr. Preincubation of HXK with glucose abrogated the effect of GSNO whereas fructose was ineffective. These results are interpreted by considering the tight binding of glucose to the enzyme as opposed to that of fructose. The segment comprised from amino acids 304 to 306 contained the most modifications. Given that this sequence is highly conserved in HXK from various species, a decline in activity is expected when a high-affinity substrate is presented. Considering that changes in primary structure are envisioned at high [GSNO]/[HXK] ratios, like those present under normal conditions, it could be hypothesized that the high concentration of hexokinase present in fast growing tumors may serve not only to sustain high glycolysis rates, but also to minimize protein damage that might result in activity decline, compromising energy metabolism.  相似文献   

16.
Random point mutagenesis does not access a large fraction of protein sequence space corresponding to primarily nonconservative amino acid substitutions. The cost of this limitation during directed evolution is unknown. Random point mutagenesis over the entire gene encoding the psychrophilic protease subtilisin S41 identified a pair of residues (Lys211 and Arg212) where mutations provided significant increases in thermostability. These were subjected to saturation mutagenesis to test whether the amino acids not easily accessible by point mutagenesis provide even better ``solutions' to the thermostabilization challenge. A significant fraction of these variants surpassed the stability of the variants with point mutations. DNA sequencing revealed highly hydrophobic residues in the four most stable variants (Pro/Ala, Pro/Val, Leu/Val, and Trp/Ser). These nonconservative replacements, accessible only by multiple (two to three) base substitutions in a single codon, would be extremely rare in a point mutation library. Such replacements are also extremely rare in natural evolution. Saturation mutagenesis may be used advantageously during directed evolution to explore nonnatural evolution pathways and enable rapid improvement in protein traits. Received: 15 March 1999 / Accepted: 28 June 1999  相似文献   

17.
 A cDNA fragment encoding a Lupinus albus. L. class-III chitinase, IF3, was isolated, using a cDNA probe from Cucumis sativus L., by in-situ plaque hybridization from a cDNA library constructed in the Uni-ZAP XR vector, with mRNAs isolated from mature lupin leaves. The cDNA had a coding sequence of 293 amino acids including a 27-residue N-terminal signal peptide. A class-III chitinase gene was detected by Southern analysis in the L. albus genome. Western blotting experiments showed that the IF3 protein was constitutively present during seed development and in all the studied vegetative lupin organs (i.e., roots, hypocotyls and leaves) at two growth stages (7- and 20-d-old plants). Accumulation of both the IF3 mRNA and IF3 protein was triggered by salicylic acid treatment as well as by abiotic (UV-C light and wounding) and biotic stress conditions (Colletotrichum gloeosporioides infection). In necrotic leaves, IF3 chitinase mRNA was present at a higher level than that of another mRNA encoding a pathogenesis-related (PR) protein from L. albus (a PR-10) and that of the rRNAs. We suggest that one role of the IF3 chitinase could be in the defense of the plant against fungal infection, though our results do not exclude other functions for this protein. Received: 15 March 1999 / Accepted: 12 July 1999  相似文献   

18.
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl‐CoA‐dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure–function insights into DGAT1, however, remain limited because of the lack of a three‐dimensional detailed structure for this membrane‐bound enzyme. In this study, the amino acid residues governing B. napus DGAT1 (BnaDGAT1) activity were investigated via directed evolution, targeted mutagenesis, in vitro enzymatic assay, topological analysis, and transient expression of cDNA encoding selected enzyme variants in Nicotiana benthamiana. Directed evolution revealed that numerous amino acid residues were associated with increased BnaDGAT1 activity, and 67% of these residues were conserved among plant DGAT1s. The identified amino acid residue substitution sites occur throughout the BnaDGAT1 polypeptide, with 89% of the substitutions located outside the putative substrate binding or active sites. In addition, cDNAs encoding variants I447F or L441P were transiently overexpressed in N. benthamiana leaves, resulting in 33.2 or 70.5% higher triacylglycerol content, respectively, compared with native BnaDGAT1. Overall, the results provide novel insights into amino acid residues underlying plant DGAT1 function and performance‐enhanced BnaDGAT1 variants for increasing vegetable oil production.  相似文献   

19.
20.
Three-dimensional modeling of the complex between retinoic acid-binding protein (CRABP) and retinoic acid suggests that binding of the ligand is mediated by interaction between the carboxyl group of retinoic acid and two charged amino acids (Arg-111 and Arg-131) whose side chains project into the barrel of the protein. To assess the contribution of these amino acids to protein-ligand interaction, amino acid substitutions were made by oligonucleotide-directed, site-specific mutagenesis. The wild-type and mutant proteins were expressed in E. coli and subsequently purified. Like wild-type CRABP, the mutant proteins are composed mainly of beta-strands as determined by circular dichroism in the presence and absence of ligand, and thus presumably are folded into the same compact barrel structure as the wild-type protein. Mutants in which Arg-111 and Arg-131 are replaced by glutamine bind retinoic acid with significantly lower affinity than the wild-type protein, arguing that these two residues indeed interact with the ligand. The mutant proteins are more resistant to thermal denaturation than wild-type CRABP in the absence of retinoic acid, but they are not as thermostable as the CRABP-retinoic acid complex. These data suggest a model for CRABP-retinoic acid interaction in which the repulsive forces between the positively-charged arginine residues provide conformational flexibility to the native protein for retinoic acid to enter the binding pocket. Elimination of the positively-charged pair of amino acids produces a protein that is more thermostable than wild-type CRABP but less effective at ligand-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号