首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Luminal epithelial and residual cells (mainly of the endometrial stromal tissue) of proestrous rat uteri have been isolated and cultured in defined medium. The prostaglandins produced during a short-term incubation (2 h) in the presence of 10 microM arachidonic acid (to optimize PG production) were determined by direct assay of the culture medium. For the epithelial cells, PGF2 alpha was produced in greatest amounts, followed by 6-keto PGF1 alpha and PGE, while low levels were synthesized by the residual cells. The synthesis of PGF2 alpha by the epithelial cells was inhibited by incorporating indomethacin into the medium and an IC50 value of 2.3 microM was obtained. Incubations performed with histamine in the absence of exogenous arachidonic acid indicated that the pathways for the production of individual prostaglandins were followed to different relative extents, with the production of 6-keto PGF1 alpha being enhanced for both groups of cells when compared to incubations with arachidonic acid.  相似文献   

2.
The production of prostaglandins (PG) E2 and F2 alpha and their possible role in regulation of protein turnover in cultured skeletal-muscle cells were examined. Primary chick myoblasts and myotubes, and L8 myotubes, produced PGE2 and PGF2 alpha from endogenous arachidonic acid. PG production by all three cell types was increased manyfold by the addition of exogenous arachidonic acid. Arachidonate-stimulated PG production was inhibited by the addition of indomethacin (0.1 mM). When L8 and chick myotubes were treated with PGE2, PGF2 alpha, arachidonic acid (0.01 mM) or indomethacin (0.1 mM), no significant alterations in rates of protein synthesis or degradation were observed. Rates of protein synthesis and degradation in these cells were responsive to the addition of 10% fetal-bovine serum under identical experimental conditions. Thus, in contrast with incubated adult skeletal muscle, it appears that the production of prostaglandin metabolites from arachidonic acid is unrelated to regulation of protein turnover in cultured muscle cells.  相似文献   

3.
Radiation-induced renal injury is characterized by proteinuria, hypertension, and progressive decline in renal function. We have previously shown that in vivo or in vitro irradiation of glomeruli with a single dose of radiation (9.5 Gy) increases glomerular albumin permeability (P(alb)) within 1 hr. The current studies tested the hypothesis that this early radiation-induced increase in P(alb) is caused by the release of arachidonic acid and by the generation of specific arachidonic acid metabolites. Glomeruli obtained from WAG/Rij/MCW rats and cultured rat glomerular epithelial and mesangial cells were studied after irradiation (9.5 Gy, single dose). Arachidonic acid release and eicosanoid synthesis by glomeruli or cultured glomerular cells were measured after irradiation, and the effect of inhibitors of phospholipase A2 (PLA2) and cyclooxygenase (COX) on the irradiation-induced increase in P(alb) was assessed. Arachidonic acid release was demonstrated within 10 mins of irradiation of isolated glomeruli and monolayer cultures of glomerular epithelial and mesangial cells. Prostaglandin F(2alpha) (PGF(2alpha)) and PGE2 release was increased after irradiation of isolated glomeruli. Blocking arachidonic acid release or COX activity before irradiation completely prevented the increase in P(alb). COX inhibition immediately after irradiation also diminished the radiation-induced increase in P(alb). We conclude that arachidonic acid and its COX metabolites play an essential role in the early cellular changes that lead to the radiation-induced increase in P(alb). Understanding of the early epigenetic effects of irradiation may lead to new intervention strategies against radiation-induced injury of normal tissues.  相似文献   

4.
Quantification of collagen synthesis by cultured human glomerular cells   总被引:4,自引:0,他引:4  
This study examines the amount of total collagen and its different fractions synthesized by cultured human glomerular epithelial and mesangial cells. Two quantitative techniques were used, namely estimation of proline (Pro) plus hydroxyproline (Hyp) present in the collagenase-sensitive proteins and ELISA or RIA of the different types of collagen. In addition, the pattern of collagen synthesis for both cell types was further examined using immunofluorescence methods and polyacrylamide gel electrophoresis. Glomerular epithelial cells synthesized mainly type IV collagen and it was, for the better part, cell-associated. Mesangial cells synthesized approx. 4-times more collagen than epithelial cells. Type I collagen was predominant, but there were also type IV and III collagens. Secreted and cell-associated collagens were present in roughly equivalent amounts. In both cell lines 10-14% of the newly synthesized collagen had been degraded within the cells. These results provide quantitative data on collagen synthesis by human glomerular cells in vitro and represent the first necessary stage before studying which factors mediate the development of glomerular sclerosis.  相似文献   

5.
Renal glomeruli have cyclo-oxygenase and lipoxygenase enzymes which convert arachidonic acid to prostaglandins, thromboxane and 12-hydroxyeicosatetraenoic acid. Glomerular epithelial and mesangial cells, in culture, also synthesize these arachidonate products. Angiotensin and vasopressin contract mesangial cells and stimulate mesangial synthesis of PGE2. PGE2, in the glomerulus, antagonizes the actions of angiotensin on the mesangium and hence reduces angiotensin-mediated glomerular contraction. Glomerular immune injury (nephrotoxic serum nephritis) augments glomerular production of prostaglandins and thromboxane. Thromboxane reduces glomerular function and inhibition of thromboxane synthesis preserves glomerular filtration rate and renal plasma flow in this disease model. Spontaneously hypertensive rats also have enhanced glomerular prostaglandin and thromboxane synthesis. Although acute inhibition of thromboxane synthesis will vasodilate the hypertensive rat kidney, chronic inhibition does not reduce blood pressure or increase renal blood flow.  相似文献   

6.
The glomerular mesangial cell: an expanding role for a specialized pericyte   总被引:32,自引:0,他引:32  
The mesangial cell occupies a central position in the renal glomerulus. It has characteristics of a modified smooth muscle cell, but is also capable of a number of other functions. Among these are generation of prostaglandins (PGs) and mediators of inflammation; production and breakdown of basement membrane and other biomatrix material; synthesis of cytokines; and uptake of macromolecules, including immune complexes. In terms of its smooth muscle activity, the mesangial cell contracts or relaxes in response to a number of vasoactive agents. This ability allows the cells to modify glomerular filtration locally. The cellular mechanism of action of many agents influencing mesangial cells involves activation of phospholipase C for phosphatidylinositol 4,5-bisphosphate. This results in generation of inositol trisphosphate and release of intracellular calcium. Mesangial cell relaxation can be mediated by enhanced cAMP or cGMP generation. Many vasoactive substances also stimulate PG production by mesangial cells. This involves activation of both phospholipase C and A2, the latter being responsible for the release of arachidonic acid. Mesangial cells are also capable of endocytosis of macromolecules, including immune complexes. This is initiated by binding to a specific receptor, resulting in formation of PG, platelet-activating factor, and reactive oxygen species. Mesangial cells can generate interleukin 1 and platelet-derived growth factor and respond to these in an autocrine manner. Thus, the mesangial cell not only can control glomerular filtration, but may also be involved in the response to local injury, including cell proliferation and basement membrane remodeling.  相似文献   

7.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

8.
Arachidonic acid metabolism in isolated glomeruli from pig kidney was investigated. Arachidonic acid metabolism via cyclooxygenase was studied by three different methodological approaches: radioimmunoassay (RIA), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). By all these techniques, the major prostaglandins (PG) formed by pig glomeruli appeared to be 6-keto-PGF1 alpha and PGF2 alpha, the former being the most abundant. RIA and GC-MS also detected lower amounts of thromboxane B2 (TxB2) and PGE2. This emphasises the similarity with human glomeruli, in which the main cyclooxygenase product has indeed been reported to be 6-keto-PGF1 alpha. The lipoxygenase activity in isolated pig glomeruli, as studied by HPLC, generated 15-HETE, 12-HETE and 5-HETE. These data demonstrate that isolated glomeruli from pig kidney possess cyclooxygenase as well as lipoxygenase activity. Since a marked functional similarity exists between human and pig kidney, the pig can be regarded as a good model for studying the influence of arachidonic acid metabolites on glomerular pathophysiology.  相似文献   

9.
In resting mesangial cells, angiotensin II and the calcium ionophore A23187 stimulated prostaglandin E2 (PGE2) formation. After pretreatment with interleukin 1 beta (IL-1 beta) or tumor necrosis factor alpha (TNF alpha), which are themselves potent stimuli for PGE2 synthesis, mesangial cells displayed an amplified response to angiotensin II and A23187. The cytokine-induced effects occurred in a time- and dose-dependent manner and were attenuated by actinomycin D, cycloheximide and dexamethasone. IL-1 beta and TNF alpha treatment also increased the amount of arachidonic acid released after stimulation of cells with angiotensin II and A23187. In addition, IL-1 beta but not TNF alpha treatment augmented the formation of PGE2 from exogenous arachidonic acid by mesangial cells. Furthermore, the conversion of prostaglandin H2 to PGE2 was not changed by IL-1 beta and TNF alpha. These results suggest that IL-1 beta and TNF alpha exert a priming effect on PGE2 production in mesangial cells.  相似文献   

10.
Exogenous estradiol (E2) has been shown to elevate PGF2 alpha output by explants of human secretory endometrium and in monolayer cultures of glandular epithelial, but not of stromal cells isolated from endometrium. In this study, PGF2 alpha output was measured in each of these cultures in the presence of E2 and the calcium ionophore A23187, added singly or in combination. The ionophore, known to liberate arachidonic acid (AA) by stimulating phospholipase activity, produced a calcium-dependent increase in PGF2 alpha output in the cultures of epithelial cells, whereas greater than additive effects were obtained with mixtures of E2 and A23187. In contrast, PGF2 alpha levels were not elevated by A23187 in the stromal cell cultures even in medium supplemented with CaCl2 or when E2 was added. A calcium-dependent increase in PGF2 alpha output was also observed in fragments of secretory endometrium incubated with A23187. Effects on PGF2 alpha output by endometrial fragments incubated with E2 and A23187 were essentially additive and intermediate between those of the two component cells types. Arachidonic acid produced similar increases in PGF2 alpha output in the epithelial and stromal cell cultures but only in the epithelial cell cultures was there greater utilization of AA in the presence of E2. When mixtures of E2 and AA were added to the cultures of epithelial cells the increase in PGF2 alpha output was 2.5-fold greater than the sum of the increases elicited by E2 or AA alone. In contrast, no enhancement of the AA effect by E2 was observed in the stromal cell cultures. Extrapolation of these results from cell cultures to intact tissue suggests that the epithelium and not the stroma is the primary target for the effects of E2 on PGF2 alpha output by secretory endometrium. The synergistic actions of E2 and either AA, the obligatory precursor of PGF2 alpha, or A23187, an enhancer of AA release from phospholipid stores, point to a stimulatory effect of E2 on prostaglandin synthase activity.  相似文献   

11.
Arachidonate metabolites and the control of glomerular function   总被引:6,自引:0,他引:6  
The glomerulus is a dynamic structure capable of regulating the glomerular filtration rate (GFR) by mesangial contraction, thereby decreasing Kf. The mesangium contracts in response to angiotensin II (AII) and arginine vasopressin (AVP), both of which are potent stimuli of vasodilatory prostaglandin (PG) production. We studied interactions among these opposing factors in glomeruli. Normal rat glomeruli synthesized PGF2 alpha greater than PGE2 greater than 6-keto-PGF1 alpha = thromboxane (Tx) B2. Rat glomerular epithelial and mesangial cells, although capable of producing these four cyclooxy-genase end products, responded to AVP and AII stimulation with a preferential increase of PGE2, which suggests an intraglomerular feedback system between constrictor and dilator factors. Whole glomeruli, when incubated in AII, decreased in size, with a maximum decrement of surface area at 10(-10) M AII. In these glomerular contraction studies, preincubation with either arachidonate or PGE2 decreased the contractile response to AII, whereas PG inhibition enhanced the glomerular contractile response. Stable endoperoxide analogs also contracted glomeruli. In the acute phase of nephrotoxic serum nephritis (NSN) there were marked increments in glomerular production of TxA2, which correlated temporally with decrements of GFR and filtration fraction. Inhibition of TxA2 synthesis normalized GFR and filtration fraction 1-3 h after induction of NSN. These studies suggest not only an important physiological feedback role of vasodilatory PGs, as modulators of AII-induced glomerular contraction, but also a direct mesangial contractile effect of the arachidonate metabolite TxA2.  相似文献   

12.
Prostaglandin (PG) synthesis was determined in human embryo lung fibroblasts (HELF) during active, slowed and nongrowing phases. Bradykinin and ascorbic acid were used to induce PG synthesis. The cells were also exposed to arachidonic acid, a PG precursor. During active growth, PGE2 synthesis in response to stimulation by either bradykinin or ascorbic acid was low. As growth slowed the cellular response changed. During quiescence bradykinin and ascorbic acid stimulated PG production markedly while the conversion of free arachidonic acid to PGE2 also increased markedly. This change in response by quiescent cells was not due to an increase in cell density. When growing and quiescent cells at the same cell density were compared, the growing cells showed very little response to bradykinin while the quiescent cells were very responsive. The change in response was also not due to any differences in arachidonic acid concentrations in the culture medium during growth and non-growth.  相似文献   

13.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

14.
The alphav integrins present on the membrane of numerous cells, mediate attachment to matrix proteins, cell proliferation, migration and survival. We studied the expression of alphav integrinis and CD47 (a beta3 chain integrin associated protein) in various forms of glomerulonephritis (GN) characterized by mesangial proliferation and/or increased mesangial matrix. In normal glomeruli, epithelial cells expressed alphavbeta3, alphavbeta5 and CD47; endothelial cells expressed alpha5beta1 and CD47; mesangial cells expressed alphavbeta5, CD47, and to a less extent alphavbeta3. In acute post infectious GN (APIGN), membrano-proliferative GN (MPGN) and diabetic nephropathy(DN), we observed that the beta3 chain, normally expressed by mesangial cells, was not detectable in the mesangium while its expression by epithelial cells was not modified. Parallel to the disappearance of alphavbeta3, the CD47 expression was decreased on the mesangial cells in MPGN, APIGN and DN. The expression of alphavbeta5 was clearly increased on podocytes and on proliferating mesangial cells in APIGN. By contrast, the mesangial expression of alphavbeta was normal or decreased in DN. The alpha5 chain of integrin, absent on normal mesangial cell, was expressed on proliferating mesangial cells in MPGN and APIGN. Thus, we observed modifications of alphavbeta3 and alphavbeta5 expression during human GN. The modulations of alphavbeta3 and alphavbeta5 expression differed according to the different glomerular cell types and were not parallel in glomerular cells: alphavbeta3 was decreased (and alphavbeta5 unchanged) on proliferating mesangial cells and alphavbeta5 was increased (and alphavbeta3 unchanged) in podocytes. This may reflect the existence of two distinct regulatory pathways.  相似文献   

15.
Progesterone and interferon-like trophoblastic proteins modulate prostaglandin (PG) synthesis from endometrium in early ovine and bovine pregnancy. Enriched epithelial cells were prepared from human endometrium removed in the proliferative phase of menstrual cycle (n = 8). Progesterone at a concentration of 1 microM suppressed PGE release from the cells during the first 24 hours in culture. After 48 hours in culture progesterone at a dose of 100 nM and 1 microM suppressed both the release of PGF2 alpha and PGE from the cells and this suppression was maintained for a further two days. Addition of exogenous 30 microM arachidonic acid (AA) abolished this effect of progesterone on both PGF2 alpha and PGE release. Interferon alpha-2 did not suppress the basal release of PGF2 alpha nor PGE. In the presence of progesterone, interferon alpha-2 attenuated the progesterone mediated suppression of PGF2 alpha but not PGE release from endometrial cells. These findings suggest that progesterone suppresses the basal release of PGs from human endometrium, but unlike the sheep, interferon alpha-2 does not exert this action on human endometrium.  相似文献   

16.
Human recombinant tumor necrosis factor-alpha (TNF) was found to stimulate the production of prostaglandins (PG) by cultured rat mesangial cells. This effect was demonstrable from 6 h, was dose dependent and affected the synthesis of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. It required both RNA and protein synthesis but was not associated with a modification of cell proliferation. TNF also stimulated adenosine 3'-5' cyclic monophosphate (cAMP) levels in the mesangial cell culture medium. Indomethacin suppressed the effect of TNF on PGs but only reduced that on cAMP, indicating that PG production partly mediates the increase in cAMP. These findings demonstrate that mesangial cells can be a target for TNF and that the mechanism of TNF action includes stimulation of both PG production and cAMP levels.  相似文献   

17.
The release of three stable metabolites of the arachidonic acid cascade was determined in cultures of cardiac myocytes and of non-muscle cells. In both cell types, the main product was 6-keto-PGF1 alpha much less PGE2 was released, while TXB2 was only detected in muscle cells. Preincubation with arachidonic acid increased the release of all the PGs in both types of culture. Mechanical injury had a synergistic effect on the increased PG release in AA-preincubated cells. However, TXB2 was not detected in F-cells in any experimental conditions. These results suggest that PG production serves a functional role in heart preservation during injury.  相似文献   

18.
The supply of free arachidonic acid from phospholipids is generally regarded as the rate-limiting step for prostaglandin (PG) synthesis by tissues. Two enzymes involved in arachidonic acid uptake into, and release from, phospholipids are acyl-CoA:lysophospholipid acyltransferase (ACLAT) and phospholipase A2 (PLA2), respectively. PGF2 alpha produced by the endometrium induces luteolysis in several species including guinea-pigs. Thimerosal, an inhibitor of ACLAT, and aristolochic acid, an inhibitor of PLA2, both reduced, in a concentration-dependent manner, the output of PGF2 alpha from guinea-pig endometrium cultured for 24 h on days 7 and 15 of the oestrous cycle. This study showed that the continual production of PGF 2 alpha by guinea-pig endometrium is not only dependent upon the activity of PLA2 for releasing free arachidonic acid for PGF2 alpha synthesis, but also on the incorporation of arachidonic acid into the phospholipid pool by the activity of ACLAT. The inhibitory effects of thimerosal and aristolochic acid on the outputs of PGE2 and 6-keto-PGF1 alpha were less marked, particularly on day 7 when the low output of PGE2 was unaffected and the output of 6-keto-PGF1 alpha was increased at the lower concentrations of thimerosal. This finding indicates that there are different pools of arachidonic acid bound as phospholipid for the syntheses of PGF2 alpha and 6-keto-PGF1 alpha by guinea-pig endometrium.  相似文献   

19.
Mesangial cell has several key roles in the control of glomerular function: it participates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitable cell lines have been established yet. We here reported the immortalization of rat kidney glomerular mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The results showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells, are well maintained after transfection. The coculture of transfected mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial cells was suppressed by epithelial cell, but the growth of epithelial cells was enhanced by mesangial cells. Moreover, an enhancing effect on the phagocytosis of mesangial cell was also observed in coculture. Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.  相似文献   

20.
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号