首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary New cytological evidence supporting x = 5 as the basic chromosome number of the genus Zea has been obtained as a consequence of our analysis of the meiotic configurations of Zea mays ssp. mays, Z. diploperennis, Z. perennis and of four F1 artificial interspecific hybrids. Z. mays ssp. mays (2n = 20) presents regular meiosis with 10 bivalents (II) and is considered here as a typical allotetraploid (A2A2B2B2). In Z. diploperennis (2n = 20) 10II are formed in the majority of the cells, but the formation of 1III + 8II + 1I or 1III + 711 + 3I in 4% of the cells would indicate its segmental allotetraploid nature (A1A1B1B1). Z. perennis (2n = 40) had 5IV + 10II in 55% of the cells and would be considered as an auto-allooctoploid (A1A1A'1A'1C1C1C2C2). Z. diploperennis x Z. mays ssp. mays (2n = 20) presents 10II in ca. 70% of the cells and no multivalents are formed. In the two 2n = 30 hybrids (Z. mays ssp. mays x Z. perennis and Z. diploperennis x Z. perennis) the most frequent meiotic configuration was 5III + 5II + 5I and in 2n = 40 hybrid (Z. diploperennis x Z. perennis) was 5IV + 10II. Moreover, secondary association was observed in the three abovementioned tetraploid taxa (2n = 20) where one to five groups of two bivalents each at diakinesis-metaphase I was formed showing the affinities between homoeologous genomes. The results, as a whole, can be interpreed by assuming a basic x = 5 in this polyploid complex. The main previous contributions that support this working hypothesis are reviewed and its phylogenetic implications studied are discussed.  相似文献   

2.
Zeatin O-glycosides have been reported as inactive and stable storage forms of cytokinins whose concentrations increase in cold stressed plants. Zeatin O-glycosides accumulation in developing bean seeds has been correlated with an increase of zeatin O-glycosyltransferase , which is specific to trans-zeatin, and catalyzes the conjugation of zeatin O-glycosides. When Phaseolus vulgaris and Zea mays seedlings were grown for 3 days at 25 and then incubated at 4 or 10 for 6 days no further growth was observed in roots. Hypertrophy was observed in the root tips of both species. In shoot-hypocotyl complexes, in contrast, growth occurred when seedlings were incubated at 10 . Western analysis, with Mabs specific to zeatin O-glycosyltransferase, detected antigenically related proteins in roots, shoot tips and cotyledons after seedlings were cold stressed for 1–6 days at 4 or 10 . Immunolocalization, of both maize and bean root sections grown at 25 revealed antigenically related proteins that were detected at low levels in cortical cells. The signal intensified upon cold stress. The localization of zeatin O-glycosyltransferase in Z. mays root tips was directly comparable to the distribution of the zeatin O-glycosides. The enzyme was detected in the nucleus, cytoplasm, and closely associated with the plasma membrane and in the cell wall of Z. mays root cells. Southern analysis suggested that more than one gene in Z. mays that were homologous to zeatin O-glycosyltransferase in P. vulgaris. Zeatin O-glycosyltransferase may be involved in modulation of cytokinins under cold stress.  相似文献   

3.
4.
Turnover and distribution of root exudates of Zea mays   总被引:1,自引:0,他引:1  
Decomposition and distribution of root exudates of Zea mays L. were studied by means of 14CO2 pulse labeling of shoots on a loamy Haplic Luvisol. Plants were grown in two-compartment pots, where the lower part was separated from the roots by monofilament gauze. Root hairs, but not roots, penetrated through the gauze into the lower part of the soil. The root-free soil in the lower compartment was either sterilized with cycloheximide and streptomycin or remained non-sterile. In order to investigate exudate distribution, 3 days after the 14C labeling, the lower soil part was frozen and sliced into 15, one-mm thick layers using a microtome. Cumulative 14CO2 efflux from the soil during the first 3 days after 14C pulse labeling did not change during plant growth and amounted to about 13–20% of the total recovered 14C (41–55% of the carbon translocated below ground). Nighttime rate of total CO2 efflux was 1.5 times lower than during daytime because of tight coupling of exudation with photosynthesis intensity. The average CO2 efflux from the soil with Zea mays was about 74 g C g–1 day–1 (22 g C m–2 day–1), although, the contribution of plant roots to the total CO2 efflux from the soil was about 78%, and only 22% was respired from the soil organic matter. Zea mays transferred about 4 g m–2 of carbon under ground during 26 days of growth. Three zones of exudate concentrations were identified from the distribution of the 14C-activity in rhizosphere profiles after two labeling periods: (1) 1–2 (3) mm (maximal concentration of exudates) 2) 3–5 mm (presence of exudates is caused by their diffusion from the zone 1); (3) 6–10 mm (very insignificant amounts of exudates diffused from the previous zones). At the distance further than 10 mm no exudates were found. The calculated coefficient of exudate diffusion in the soil was 1.9 × 10–7 cm2 s–1.  相似文献   

5.
Four bacterial isolates were examined for their ability to increase the availability of water soluble Cu, Cr, Pb and Zn in soils and for their effect on metals uptake by Zea mays and Sorghum bicolor. Random Amplified Polymorphic DNA (RAPD) analysis was used to show that the bacterial cultures were genetically diverse. Bacterial isolates S3, S28, S22 and S29 had 16S rRNA gene sequences that were most similar to Bacillus subtilis, Bacillus pumilus, Pseudomonas pseudoalcaligenes and Brevibacterium halotolerans based on 100% similarity in their 16S rDNA gene sequence, respectively. Filtrate liquid media that had supported B. pumilus and B. subtilis growth significantly increased Cr and Cu extraction from soil polluted with tannery effluent and from Cu-rich soil, respectively, compared to axenic media. The highest concentrations of Pb (0.2 g kg−1), Zn (4 g kg−1) and Cu (2 g kg−1) were accumulated in shoots of Z. mays grown on Cu-rich soil inoculated with Br. halotolerans. The highest concentration of Cr (5 g kg−1) was accumulated in S. bicolor roots grown in tannery-effluent-polluted soil inoculated with a mixed inoculum of bacterial strains. These results show that bacteria play an important role in increasing metal availability in soil, thus enhancing Cr, Pb, Zn and Cu accumulation by Z. mays and S. bicolor.  相似文献   

6.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

7.
The maize (Zea mays L.) plants inoculated by N2-fixing bacterium Azospirillum showed increased activity of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) in root cells free extracts over uninoculated control plants. Maximum differences in NADH-GDH activity were observed during the second and third weeks after sowing. The specific activity of GS showed a greater increase at the end of the assay. The percentage of nitrogen in leaves, root and foliage length, total fresh mass and nitrogenase activity were higher in inoculated plants than in the control ones.  相似文献   

8.
The genus Zea is here divided into the Sect. Luxuriantes Doebley & litis sect. n., including the perennials Z. diploperennis (2n = 20) and Z. perennis (2n = 40) and the annual Z. luxurians (2n = 20); and Sect. Zea , including the wild Z. mays ssp.parviglumis and Z. mays ssp. mexicana (both 2n = 20), and Z. mays ssp. mays (2n = 20), the highly domesticated and tremendously variable derivate of the latter. This division is verified by a multivariate analysis of a large number of morphological characters of the male inflorescence. Cytogenetic and chemotaxonomic evidence supports the morphological conclusions. A consideration of the phylogeny of Zea within the conceptual framework offered by this new sectioning of the genus points convincingly to annual teosinte (Z. mays ssp. mexicana) as the ancestor of cultivated maize.  相似文献   

9.
A compromise classification of the genus Zea, reflecting both phylogeny and practical needs, recognizes six taxa, as follows: Section Luxuriantes : Zea perennis. Zea diploperennis, Zea luxurians. Section Zea : Zea mays ssp. mexicana (Neo-volcanic Plateau), Zea mays ssp. parviglumis Iltis & Doebley ssp. n. var. parviglumis (Rio Balsas drainage, Pacific slope from Guerrero to Jalisco), Zea mexicana ssp. parviglumis var. huehuetenangensis Iltis & Doebley var. n. (Pacific slope, western Guatemala, Prov. Huehuetenango), Zea mays ssp. mays. The new subspecies is distinguished by smaller spikelets and rachis joints, the varieties by different habitats, blooming dates and their genetic behavior in relation to cultivated Zea mays. Zea mays ssp. mexicana is the ancestor of corn.  相似文献   

10.
This study was aimed to isolate and identify the N2-fixing bacterium Gluconacetobacter diazotrophicus from 11 sugarcane varieties, grown under field conditions in four Cuban provinces, and from their associated mealybugs Saccharicoccus sacchari. Identification was based on morphological and biochemical tests and PCR-amplification of 16S rRNA genes using species-specific primers. From all sugarcane varieties and numerous mealybug colonies sampled, G. diazotrophicus isolates were recovered from inside sugarcane stems of only three varieties, and one from S. sacchari colony. These four isolates showed acetylene reduction activity in nitrogen-free media and contained nifH genes which were PCR-amplified using specific primers. ERIC-PCR fingerprinting was used to compare the Cuban G. diazotrophicus isolates with type and reference strains of N2-fixing Gluconacetobacteria. The very low frequency of G. diazotrophicus isolates recovered is probably related with the high doses of nitrogen fertilizers applied to the sugarcane in the Cuban fields for almost 30 years. Some genetic differences, using ERIC-PCR, were detected among G. diazotrophicus strains, which could be related with its source.  相似文献   

11.
Summary A method was devised for the biochemical selection of immature, haploid Zea mays embryos using Adh1 and either the Stock 6 or indeterminate gametophyte (ig in W23) high haploid-inducing systems. Haploid (Adh1 ) embryos survived exposure to levels of allyl alcohol which killed diploid (Adh1 +/Adh1 ) embryos. Of the total surviving embryos which were examined cytologically 15% (using ig) and 22% (using Stock 6) were haploid. In two experiments with Stock 6, 100% of the surviving embryos were haploid. To obtain maximum effectiveness of Stock 6 and ig, Adh1 was transferred to stock 6 and W23 backgrounds. Immature, haploid embryos are being used to develop haploid, morphogenic tissue cultures of Zea mays.  相似文献   

12.
The objectives of this study were to construct a linkage map and identify quantitative trait loci (QTLs) controlling root aerenchyma formation in drained soil conditions using 195 F2 individuals derived from a cross between maize inbred line B73 × teosinte Zea luxurians. A 107 SSR marker based map covering 1,331 cM across all ten chromosomes was developed. One significant difference between the parents utilized in the study was that under non-flooding conditions, B73 exhibits a minor capacity to develop root aerenchyma, whereas Z. luxurians exhibits a high tendency to form aerenchyma. Linkage analysis indicated segregation distortion regions on chromosomes 2, 4 and 8, and severe recombination suppression on the long arm of chromosome 4. Multiple interval mapping analysis suggests that five QTLs for aerenchyma formation in non-flooding conditions are located on chromosomes 2, 3, 5, 9 and 10, and these explained 36.3% of the total phenotyphic variance. The Z. luxurians alleles in all five QTLs increased the capacity to form aerenchyma and the locations of these QTLs did not overlap those previously identified in the teosinte Z. nicaraguensis. By transferring aerenchyma-forming QTLs from both Z. luxurians and Z. nicaraguensis, it may be possible to pyramid these genes and develop a maize line with exceptional aerenchyma formation and a high level of tolerance to flooding conditions.  相似文献   

13.
Summary The coding and flanking sequences of the 18S-5S ribosomal RNA genes and the cytochrome oxidase subunit II gene of Zea diploperennis mitochondrial DNA have been determined and compared to the corresponding sequences of normal maize (Zea mays L.) Both length and substitution mutations are found in the coding region of the 18S rRNA gene, whereas only one substitution mutation is found in the coding region of cytochrome oxidase II. Sequence divergence between maize and Zea diploperennis is about one-tenth of that between wheat and maize. The rate of nucleotide divergence by base substitution is less for plant mitochrondrial genes than for comparable genes in animal mitochondria.  相似文献   

14.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

15.
The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rain‐fed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water‐use efficiency in Zea mays have been limited, and warrant a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water‐use in a field environment. The stable carbon isotope composition (δ13C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13C in Z. mays. Significant variation in leaf δ13C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13C to determine the optimum sampling time to maximize the use of leaf δ13C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13C. Taken together these results outline a strategy for using leaf δ13C and reveal its usefulness as a measure of transpiration efficiency under well‐watered conditions rather than a predictor of performance under drought.  相似文献   

16.
We have characterized an abundant mitochondrial protein from Zea mays and have shown it to be structurally and metabolically indistinguishable from a previously described Tetrahymena thermophila and Saccharomyces cerevisiae mitochondrial protein, referred to as hsp60, which is homologous to the groEL protein of Escherichia coli. This Z. mays protein, which we also refer to as hsp60, was found to be antigenically quite distinct from the chloroplast Rubisco-binding protein, another groEL homolog. Using an antiserum directed against the T. thermophila hsp60, we determined that the relative concentration of Z. mays hsp60 was two to four times higher in mitochondria isolated from tissues of early developmental stages than that found in mitochondria isolated from more adult tissues. Given the known and suggested roles of the other members of the groEL family of proteins, our results suggest that the Z. mays hsp60 may play an important role in mitochondrial biogenesis during early plant development.  相似文献   

17.
Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Steppe (Altai, Russia) using nitrogen-free alkaline medium of pH 10. The isolates were represented by thin motile rods forming terminal round endospores. They are strictly fermentative saccharolytic anaerobes but tolerate high oxygen concentrations, probably due to a high catalase activity. All of the strains are obligately alkaliphilic and highly salt-tolerant natronophiles (chloride-independent sodaphiles). Growth was possible within a pH range from 7.5 to 10.6, with an optimum at 9.5–10, and within a salt range from 0.2 to 4 M Na+, with an optimum at 0.5–1.5 M for the different strains. The nitrogenase activity in the whole cells also had an alkaline pH optimum but was much more sensitive to high salt concentrations compared to the growing cells. The isolates formed a compact genetic group with a high level of DNA similarity. Phylogenetic analysis based on 16S-rRNA gene sequences placed the isolates into Bacillus rRNA group 1 as a separate lineage with Amphibacillus tropicus as the nearest relative. In all isolates the key functional nitrogenase gene nifH was detected. A new genus and species, Natronobacillus azotifigens gen. nov., sp. nov., is proposed to accommodate the novel diazotrophic haloalkaliphiles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the 16S rRNA gene of the novel strains are EU143681-EU143690 and EU850814-EU850816; for the nifH gene the accession numbers are EU542601, EU563380-EU563386 and EU850817-EU850819.  相似文献   

18.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

19.
Zea mays (Z. mays) is one of the main cereal crops in the world, and it′s by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.  相似文献   

20.
The incorporation of 14C into sucrose and hexose phosphates during steady-state photosynthesis was examined in intact leaves of Zea mays L. plants. The compartmentation of sucrose synthesis between the bundle sheath and mesophyll cells was determined by the rapid fractionation of the mesophyll and comparison of the labelled sucrose in this compartment with that in a complete leaf after homogenisation. From these experiments it was concluded that the majority of sucrose synthesis occurred in the mesophyll cell type (almost 100% when the time-course of sucrose synthesis was extrapolated to the time of 14C-pulsing). The distribution of enzymes involved in sucrose synthesis between the two cell types indicated that sucrose-phosphate synthetase was predominantly located in the mesophyll, as was cytosolic (neutral) fructose-1,6-bisphosphatase activity. Stromal (alkaline) fructose-1,6-bisphosphatase activity was found almost exclusively in the bundle-sheath cells. No starch was found in the mesophyll tissue. These data indicate that in Zea mays starch and sucrose synthesis are spatially, separated with sucrose synthesis occurring in the mesophyll compartment and starch synthesis in the bundle sheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号