首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

2.
Peroxisome proliferators are a class of hepatic carcinogens in rodents and have been proposed to act in part by increasing oxidative stress. Fatty acyl CoA oxidase (FAO), which is highly induced by peroxisome proliferators, is the hydrogen peroxide-generating enzyme of the peroxisomal beta-oxidation pathway. We previously showed that the treatment of rats and mice with the peroxisome proliferator ciprofibrate resulted in increased hepatic NF-kappaB activity and suggested that this effect may be secondary to the action of H2O-generating enzymes. To test this possibility directly, we have determined whether transient overexpression of FAO, in the absence of peroxisome proliferators, leads to NF-kappaB activation. Here, we show that FAO overexpression in Cos-1 cells, in the presence of an H2O-generating substrate, can activate a NF-kappaB regulated reporter gene. Electrophoretic mobility shift assays further demonstrated that FAO expression increases nuclear NF-kappaB DNA binding activity in a dose-dependent manner. The antioxidants vitamin E and catalase can inhibit this activation. These results indicate that FAO mediates, at least in part, peroxisome proliferator-induced NF-kappaB activation.  相似文献   

3.
The purpose of this study was to determine if the hypolipidemic peroxisome proliferator ciprofibrate, which induces peroxisomes in the liver, can induce peroxisomes in cultured porcine pulmonary endothelial cells. Ciprofibrate was added at three concentrations to cell cultures for a 6-day period. The induction of peroxisomes in the cells was detected by determining total peroxisomal beta-oxidation and peroxisomal catalase activity. The addition of ciprofibrate was found to increase peroxisomal enzyme activities in a dose-dependent manner, with the highest activity being reached at 1000 microM ciprofibrate. Ciprofibrate also caused an increased transfer of albumin across endothelial cells cultured on micropore filters. This study shows that peroxisomal enzyme activities can be induced by ciprofibrate in endothelial cells, which may have implications in diseases mediated by vascular injury.  相似文献   

4.
Effects of cocaine administration on lipid peroxidation and liver damage in immunocompromised mice fed different levels of dietary proteins were investigated. Indices of lipid peroxidation and serum aminotransferases as evidence of free radical attack and liver damage were compared in mice fed a low protein (4%) or regular protein diet (20% protein) for 3 weeks and then infected with murine leukemia virus and given daily intraperitoneal injections of increasing progressive doses of 5-45 mg.kg-1.day-1 of cocaine for 11 weeks. Cocaine administration significantly increased hepatic triglycerides, serum aminotransaminases, conjugated dienes, lipid fluorescence, and malondialdehyde levels. These changes were exacerbated by retroviral infection and also by protein undernutrition. Retroviral infection additively increased indices of cocaine-induced lipid peroxidation and hepatic damage. Significant increases in indices of lipid peroxidation and greater liver injury were also detected in similarly treated mice that received the low protein diet compared with well-nourished mice. These results show that immunocompromised mice fed low levels of dietary protein form significantly increased immunogenic lipid peroxidation adducts during cocaine treatment.  相似文献   

5.
M Peled-Kamar  J Lotem  E Okon  L Sachs    Y Groner 《The EMBO journal》1995,14(20):4985-4993
The copper-zinc superoxide dismutase (CuZnSOD) gene resides on chromosome 21 and is overexpressed in Down syndrome (DS) patients. Transgenic CuZnSOD mice with elevated levels of CuZnSOD were used to determine whether, as in DS, overexpression of CuZnSOD was also associated with thymus and bone marrow abnormalities. Three independently derived transgenic CuZnSOD strains had abnormal thymi showing diminution of the cortex and loss of corticomedullary demarcation, resembling thymic defects in children with DS. Transgenic CuZnSOD mice were also more sensitive than control mice to in vivo injection of lipopolysaccharide (LPS), reflected by an earlier onset and enhanced apoptotic cell death in the thymus. This higher susceptibility to LPS-induced apoptosis was associated with an increased production of hydrogen peroxide and a higher degree of lipid peroxidation. When cultured under suboptimal concentrations of interleukin 3 or in the presence of tumour necrosis factor, bone marrow cells from transgenic CuZnSOD mice produced 2- to 3-fold less granulocyte and macrophage colonies than control. The results indicate that transgenic CuZnSOD mice have certain thymus and bone marrow abnormalities which are similar to those found in DS patients, and that the defects are presumably due to an increased oxidative damage resulting in enhanced cell death by apoptosis.  相似文献   

6.
Clofibrate is a peroxisome proliferator that can cause hepatic cancer in rodents. It has been suggested that oxidative damage is involved in this hepatocarcinogenesis, although the data are conflicting. We confirmed that clofibrate causes oxidative damage in nuclei from the livers of mice treated with this substance, measured both as protein carbonyls and levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA. In addition, clofibrate also affects mitochondria, causing elevated levels of carbonyls and 8-OHdG, increased state 4 respiration and decreased adenosine triphosphatase (ATPase) activity. No evidence for clofibrate-induced lipid peroxidation in mitochondria was obtained. We propose that mitochondria may be a major target of injury and a source of oxidative stress in clofibrate-treated animals.  相似文献   

7.
Lophirones B and C are chalcone dimers with proven chemopreventive activity. This study evaluates the hepatoprotective effect lophirones B and C in acetaminophen‐induced hepatic damage in mice using biomarkers of hepatocellular indices, oxidative stress, proinflammatory factors and lipid peroxidation. Oral administrations of lophirones B and C significantly (p < 0.05) attenuated acetaminophen‐mediated alterations in serum alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin and total bilirubin. Similarly, acetaminophen‐mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6‐ phosphate dehydrogenase were significantly attenuated in the liver of mice. Increased levels of conjugated dienes, lipid hydroperoxides, malondialdehyde, protein carbonyl and fragmented DNA were significantly lowered by lophirones B and C. Levels of tumour necrosis factor‐α, interleukin‐6 and 8 were significantly lowered in serum of acetaminophen treated mice by the chalcone dimers. Overall, results of this study show that lophirones B and C halted acetaminophen‐mediated hepatotoxicity.  相似文献   

8.
Spontaneous hepatic fibrosis in transgenic mice overexpressing PDGF-A   总被引:2,自引:0,他引:2  
Platelet derived growth factor (PDGF) plays a central role in repair mechanisms after acute and chronic tissue damage. To further evaluate the role of PDGF-A in liver fibrogenesis in vivo, we generated transgenic mice with hepatocyte-specific overexpression of PDGF-A using the CRP-gene promoter. Transgenic but not wildtype mice showed expression of PDGF-A mRNA in the liver. Hepatic PDGF-A overexpression was accompanied by a significant increase in hepatic procollagen III mRNA expression as well as TGF-beta1 expression. Liver histology showed increased deposition of extracellular matrix in transgenic but not in wildtype mice. PDGF-A-transgenic mice showed positive sinusoidal staining for alpha-SMA indicating an activation of hepatic stellate cells. Since the profibrogenic effect of PDGF-A was accompanied by increased TGF-beta1 protein concentration in the liver of transgenic mice, it can be postulated that PDGF-A upregulates expression of TGF-beta1 which is a strong activator of hepatic stellate cells. Thus, these results point towards a fibrosis induction by PDGF-A via the TGF-beta1 signalling pathway. In conclusion, expression and functional analysis of PDGF-A in the liver of transgenic mice suggest a relevant profibrogenic role of PDGF-A via TGF-beta1 induction. Counteracting PDGF-A may therefore be one of the effects of tyrosine kinase inhibitors which showed protective effects in animal models of liver fibrosis.  相似文献   

9.
We report a novel, highly sensitive and selective method for the extraction and quantification of acyl CoA esters from plant tissues. The method detects acyl CoA esters with acyl chain lengths from C4 to C20 down to concentrations as low as 6 fmol in extracts. Acyl CoA esters from standard solutions or plant extracts were derived to their fluorescent acyl etheno CoA esters in the presence of chloroacetaldehyde, separated by ion-paired reversed-phase high-performance liquid chromatography, and detected fluorometrically. This derivitization procedure circumvents the selectivity problems associated with previously published enzymatic methods, and methods that rely on acyl chain or thiol group modification for acyl CoA ester detection. The formation of acyl etheno CoA esters was verified by mass spectrometry, which was also used to identify unknown peaks from chromatograms of plant extracts. Using this method, we report the composition and concentration of the acyl CoA pool during lipid synthesis in maturing Brassica napus seeds and during storage lipid breakdown in 2-day-old Arabidopsis thaliana seedlings. The concentrations measured were in the 3--6 microM range for both tissue types. We also demonstrate the utility of acyl CoA profiling in a transgenic B. napus line that has high levels of lauric acid. To our knowledge, this is the first time that reliable estimates of acyl CoA ester concentrations have been made for higher plants, and the ability to profile these metabolites provides a valuable new tool for the investigation of gene function.  相似文献   

10.
11.
Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid β-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and β-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid β-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote β-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating β-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.  相似文献   

12.
To assess whether lipid peroxidation of hepatic mitochondria is associated with cholestatic hepatic injury we examined the effect of bile duct ligation (BDL) versus sham surgery on mitochondrial lipids of rats maintained on one of seven diets. Diets included vitamin E-deficient (E-) and vitamin E-sufficient (E+) combined with normal lipid (11.9% calories as stripped corn oil), high lipid (35% calories as stripped corn oil), or n-3 fatty acid (fish oil) supplementation. Rats were killed 17 days after surgery, mitochondria were isolated by differential centrifugation, and lipid-conjugated dienes and thiobarbituric acid-reacting substances (TBARS) were measured in mitochondrial lipids as indices of lipid peroxidation. BDL resulted in significant increases in lipid peroxidation in all dietary groups. The E- high lipid diets (with either corn oil or fish oil) were associated with higher lipid peroxide and serum bilirubin values in BDL rats compared to the normal lipid diets. Fish oil supplementation did not ameliorate cholestatic or oxidative injury. Serum alanine aminotransferase, bilirubin, alkaline phosphatase, and cholylglycine levels correlated significantly with levels of mitochondrial conjugated dienes and TBARS. These data suggest that free radical stress occurs during BDL in the rat and may result in mitochondrial lipid peroxidation, and that diets high in lipid may increase free radical damage to hepatic mitochondria. The role of free radicals in cholestatic hepatic injury requires further investigation.  相似文献   

13.
Jagetia GC  Reddy TK 《Life sciences》2005,77(7):780-794
The alteration in the antioxidant status and lipid peroxidation was investigated in Swiss albino mice treated with 2 mg/kg b.wt. naringin, a citrus flavoglycoside, before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose-dependent elevation in the lipid peroxidation while a dose-dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. Treatment of mice with 2 mg/kg b. wt. naringin inhibited the radiation-induced elevation in the lipid peroxidation as well as depletion of glutathione, glutathione peroxidase, superoxide dismutase and catalase in liver and small intestine. Radiation-induced lipid peroxidation increased with time, which was greatest at 2 h post-irradiation and declined thereafter in the liver and small intestine. Similarly, a maximum decline in the glutathione glutathione peroxidase, and superoxide dismutase was observed at 1 h, while catalase showed a maximum decline at 2 h post-irradiation. Our study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation.  相似文献   

14.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

15.
Two substances which are products of the isoprenoid pathway, can participate in lipid peroxidation. One is digoxin, which by inhibiting membrane Na(+)-K+ ATPase, causes increase in intracellular Ca2+ and depletion of intracellular Mg2+, both effects contributing to increase in lipid peroxidation. Ubiquinone, another products of the pathway is a powerful membrane antioxidant and its deficiency can also result in defective electron transport and generation of reactive oxygen species. In view of this and also in the light of some preliminary reports on alteration in lipid peroxidation in neuropsychiatric disorders, a study was undertaken on the following aspects in some of these disorders (primary generalised epilepsy, schizophrenia, multiple sclerosis, Parkinson's disease and CNS glioma)--1) concentration of digoxin, ubiquinone, activity of HMG CoA reductase and RBC membrane Na(+)-K+ ATPase 2) activity of enzymes involved in free radical scavenging 3) parameters of lipid peroxidation and 4) antioxidant status. The result obtained indicates an increase in the concentration of digoxin and activity of HMG CoA reductase, decrease in ubiquinone levels and in the activity of membrane Na(+)-K+ ATPase. There is increased lipid peroxidation as evidenced from the increase in the concentration of MDA, conjugated dienes, hydroperoxides and NO with decreased antioxidant protection as indicated by decrease in ubiquinone, vit E and reduced glutathione in schizophrenia, Parkinson's disease and CNS glioma. The activity of enzymes involved in free radical scavenging like SOD, catalase, glutathione peroxidase and glutathione reductase is decreased in the above diseases. However, there is no evidence of any increase in lipid peroxidation in epilepsy or MS. The role of increased operation of the isoprenoid pathway as evidenced by alteration in the concentration of digoxin and ubiquinone in the generation of free radicals and protection against them in these disorders is discussed.  相似文献   

16.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

17.
Expression of multiple drug resistant (MDR) phenotype and over-expression of P-glycoprotein (P-gp) in the human hepatocellular carcinoma (HCC) cell clone P1(0.5), derived from the PLC/PRF/5 cell line (P5), are associated with strong resistance to oxidative stress and a significant (p < 0.01) increase in intracellular vitamin E content as compared with the parental cell line. This study evaluates the role of vitamin E in conferring resistance to drugs and oxidative stress in P1(0.5) cells. Parental drug-sensitive cells, P5, were incubated in alpha-tocopherol succinate (alpha-TS, 5 microM for 24 h) enriched medium to increase intracellular vitamin E content to levels comparable to those observed in P1(0.5) cells at basal conditions. Susceptibility to lipid peroxidation and oxidative DNA damage were assessed by measuring the concentration of thiobarbituric-reactive substances (TBARS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) at basal and after experimental conditions. Cell capacity to form colonies and resistance to doxorubicin were also studied. P5 cells, treated with alpha-TS, became resistant to ADP-Fe3+ and to ionizing radiation-induced lipid peroxidation as P1(0.5) cells. Exposure to ADP-Fe3+ or ionizing radiation increased TBARS and the 8-OHdG content in the P5 cells, while vitamin E enrichment abolished these effects. Irradiation doses at 5 cGy increased TBARS and 8-OHdG. They also inhibited cell capacity to form colonies in the untreated P5 cells. Incubation with alpha-TS fully reverted this effect and significantly (p < 0.01) reduced the inhibitory effect of cell proliferation induced by irradiation doses at >500 cGy. Resistance to doxorubicin was not affected by alpha-TS. These observations demonstrate the role of vitamin E in conferring protection from lipid peroxidation, ionizing radiation and oxidative DNA damage on the human HCC cell line. They also rule out any role of P-gp over-expression as being responsible for these observations in cells with MDR phenotype expression.  相似文献   

18.
The lipid-lowering drug ciprofibrate stimulates gastrin-producing cells in the rat stomach without lowering gastric acidity. Although suggested to be a luminal action on antral peroxisome proliferator-activated receptor-alpha (PPAR-alpha), the mechanism is still not fully elucidated. Gastric bypass was surgically prepared in male Sprague-Dawley rats. Gastric-bypassed and sham-operated rats were either given ciprofibrate (50 mg.kg(-1).day(-1) in methocel) or vehicle alone for 7 wk. PPAR-alpha knockout (KO) and wild-type (WT) mice were either given ciprofibrate (500 mg.kg(-1).day(-1) in methocel) or vehicle alone for 2 wk. The concentration of gastrin in blood was analyzed. Antral G cell density and gastrin mRNA abundance were determined by using immunostaining and Northern blot analysis. Ciprofibrate did not raise plasma gastrin or G cell density in gastric-bypassed rats, although the gastrin mRNA level was slightly increased. In contrast, ciprofibrate induced hypergastrinemia, a 50% increase in G cell density, and a threefold increase in gastrin mRNA in sham-operated rats. In PPAR-alpha KO mice, ciprofibrate did not raise G cell density or the gastrin mRNA level. The serum gastrin level was reduced by ciprofibrate. In WT mice, ciprofibrate induced hypergastrinemia, a doubling of G cell density, and a threefold increase in gastrin mRNA. Comparing animals dosed with vehicle only, PPAR-alpha KO mice had higher serum gastrin concentration than WT mice. We conclude that the main effects of ciprofibrate on G cells are mediated from the antrum lumen, and the mechanism is dependent on PPAR-alpha. The results indicate that PPAR-alpha may have a role in the physiological regulation of gastrin release.  相似文献   

19.
The purpose of this study was to determine the effects of dietary fat, vitamin E, and iron on oxidative damage and antioxidant status in kidneys of mice. Sixty 1-month-old male Swiss-Webster mice were fed a basal vitamin E-deficient diet that contained either 8% fish oil + 2% corn oil or 10% lard with or without 1 g all-rac-alpha-tocopherol acetate or 0.74 g ferric citrate per kilogram of diet for 4 weeks. Significantly (P < 0.05) higher levels of lipid peroxidation products, thiobarbituric acid reactants (TBAR), and conjugated dienes were found in the kidneys of mice fed with fish oil compared with mice fed lard irrespective of vitamin E status. Mice maintained on a vitamin E-deficient diet had significantly higher renal levels of TBAR, but not conjugated dienes, than the supplemented group. Fish oil fed mice receiving vitamin E supplementation had lower levels of alpha-tocopherol than did mice in the lard fed group. Significantly higher levels of ascorbic acid were also found in the kidneys of mice fed with fish oil than were found in mice fed lard. The levels of protein carbonyls and glutathione (GSH), and activities of catalase, superoxide dismutase, selenium (Se)-GSH peroxidase, and non-Se-GSH peroxidase were not significantly altered by dietary fat or vitamin E. Dietary iron had no significant effect on any of the oxidative stress and antioxidant indices measured. The results obtained provide experimental evidence for the pro-oxidant effect of high fish oil intake in mouse kidney and suggest that dietary lipids play a key role in determining cellular susceptibility to oxidative stress.  相似文献   

20.
Catalase plays an important role in protecting organisms against oxidative damage caused by reactive oxygen species (ROS) by degrading surplus hydrogen peroxide. Addition of exogenous catalase can alleviate injuries caused by ROS. Thus, production of human catalase through genetic engineering will meet the increasing therapeutic demand for this enzyme. In this study, we successfully expressed the recombinant gene in mouse mammary gland, and biologically active human catalase was secreted into the milk of the transgenic mice. The peroxisomal targeting sequence (PTS) within the catalase gene had no significant negative effect on the secretion of the recombinant protein. Intake of the transgenic milk by the pups was found to decrease lipid peroxidation, increase the total superoxide dismutase (T-SOD) activity in the brain, and enhance the total antioxidative capacity (T-AOC) of brain, liver, and serum. To our knowledge, this is the first example of efficient production of biologically active human catalase in the milk of transgenic animals. Our study suggests that scaled-up production in transgenic farm animals would yield sufficient human catalase for biomedical research and clinical therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号