首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dolphin whistles vary by frequency contour, changes in frequency over time. Individual dolphins may broadcast their identities via uniquely contoured whistles, "signature whistles." A recent debate concerning categorization of these whistles has highlighted the on-going need for perceptual studies of whistles by dolphins. This article reviews research on dolphin whistles as well as presenting a study in which a captive, female, adult bottlenose dolphin performed a conditional matching task in which whistles produced by six wild dolphins in Sarasota Bay were each paired with surrogate producers, specific objects/places. The dolphin subject also categorized unfamiliar exemplars produced by the whistlers represented by the original stimuli. The dolphin successfully discriminated among the group of whistles, associated them with surrogate producers, grouped new exemplars of the same dolphin's whistle together when the contour was intact, and discriminated among same-contour whistles produced by the same dolphin. Whistle sequences that included partial contours were not categorized with the original whistlers. Categorization appeared to be based on contour rather than specific acoustic parameters or voice cues. These findings are consistent with the perceptual tenets associated with the signature whistle framework which suggests that dolphins use individualized whistle contours for identification of known conspecifics.  相似文献   

2.
A widespread problem in the study of animal vocalizations is evaluating the acoustic similarity of signals both between individuals of a social group and between social groups. This problem becomes especially salient when classifying the narrow-band frequency-modulated signals, such as whistles, found in many avian and mammalian species. Whistles are usually characterized by their relative change in frequency over time, known as whistle ‘contour’. Measuring such a characteristic is difficult as it is not a single measurement, such as the mean frequency or duration of a signal, but several associated measurements of frequency across time. This paper reports on a new quantitative technique for determining whistle types based on whistle contour similarity and an application of this technique to the whistles of bottlenose dolphins to demonstrate its utility. This ‘contour similarity’ technique (CS technique) uses cluster analysis to group the correlation coefficients of frequency measurements from a data set of signals. To demonstrate the efficacy of this CS technique, three data sets were analysed, two using computer-generated signals and a third using adult bottlenose dolphin whistles, to (1) examine the efficacy of correlation coefficients for grouping signals by their similarity in whistle contour and (2) determine the viability of this technique for categorizing bottlenose dolphin whistles. Measured actual frequencies and correlation matrices from the four simulated signal types and a correlation matrix from the whistles of five captive adult bottlenose dolphins were each subjected to K-means cluster analysis and the resulting signal types were evaluated. Results indicated that the technique grouped actual frequencies according to the amount of shared actual frequencies and grouped correlation coefficients successfully according to signal contour. This result endured even if contours differed in overall duration or actual frequency or were expanded or compressed with respect to frequency or time. The results suggest that this approach is a viable method for assigning whistle contours to categories in bottlenose dolphins or any other species with narrow-band, frequency-modulated signals.  相似文献   

3.
Bottlenose dolphins (Tursiops truncatus) have individually distinctive signature whistles. Each individual dolphin develops its own unique frequency modulation pattern and uses it to broadcast its identity. However, underwater sound localization is challenging, and researchers have had difficulties identifying signature whistles. The traditional method to identify them involved isolating individuals. In this context, the signature whistle is the most commonly produced whistle type of an animal. However, most studies on wild dolphins cannot isolate animals. We present a novel method, SIGnature IDentification (SIGID), that can identify signature whistles in recordings of groups of dolphins recorded via a single hydrophone. We found that signature whistles tend to be delivered in bouts with whistles of the same type occurring within 1–10 s of each other. Nonsignature whistles occur with longer or shorter interwhistle intervals, and this distinction can be used to identify signature whistles in a recording. We tested this method on recordings from wild and captive bottlenose dolphins and show thresholds needed to identify signature whistles reliably. SIGID will facilitate the study of signature whistle use in the wild, signature whistle diversity between different populations, and potentially allow signature whistles to be used in mark‐recapture studies.  相似文献   

4.
Animal communication signals are diverse. The types of sounds that animals produce, and the way that information is encoded in those sounds, not only varies between species but can also vary geographically within a species. Therefore, an understanding of the vocal repertoire at the population level is important for providing insight into regional differences in vocal communication signals. One species whose vocal repertoire has received considerable attention is the bottlenose dolphin. This species is well known for its use of individually distinctive identity signals, known as signature whistles. Bottlenose dolphins use their signature whistles to broadcast their identity and to maintain contact with social companions. Signature whistles are not innate, but are learnt signals that develop within the first few months of an animal’s life. It is therefore unsurprising that studies which have characterized signature whistles in wild populations of bottlenose dolphins have provided evidence of geographic variation in signature whistle structure. Here, we describe the occurrence of signature whistles in a previously unexplored wild population of bottlenose dolphins in Cardigan Bay, Wales. We present the first occurrence of a signature whistle with an ultrasonic fundamental frequency component (>30 kHz), a frequency band that was not thought to be utilized by this species for whistle communication. We also describe the occurrence of an ultrasonic non-signature whistle. Our findings highlight the importance of conducting regional studies in order to fully quantify a species’ vocal repertoire, and call into question the efficacy of those studies that use restricted sampling rates.  相似文献   

5.
Dolphin communicative signals show great plasticity. Dolphins modify signal structure to cope with their environment, in response to stress, and in some species to mimic group members. Hence, whistle structure variations may offer insights to interspecific associations among dolphin species, which although temporal and opportunistic are common. In this study, I test the hypothesis that interspecific interactions influence dolphin whistle structure, particularly during social events. The study took place in the Southern Caribbean coast of Costa Rica, where interspecific associations of the distantly related Guyana and Bottlenose dolphins occur on daily basis. The results indicate that interspecific groups emit whistles that show intermediate whistle structure compared to whistles emitted in intraspecific groups. This pattern is seen during social interactions between species, but not when interspecific groups are traveling. Social events in interspecific groups were of antagonistic nature, where Bottlenose dolphins isolated and harassed one or two Guyana dolphins. Contour data suggest that the most vocal species during these encounters was the Guyana dolphin. Therefore, the observed modifications in whistles structure likely reflect a stress response by the Guyana dolphins. Another alternative explanation includes signal convergence between interacting species. However, to understand the nature of these potential modifications, future studies should combine acoustic tags and directional recording systems to follow the vocalizing animals. Despite the shortcomings of this study, it provides some of the first insights into dolphin interspecific communication, providing evidence of overall signal change during interspecific interactions.  相似文献   

6.
The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.  相似文献   

7.
Despite much research on bottlenose dolphin signature whistles, few have investigated the role of maternal whistles in early calf development. We investigated maternal whistle use in the first weeks postpartum for captive dolphins. The overall whistling rate increased by a factor of ten when the calves were born and then decreased again in the third week of the one surviving calf. Adult whistles were distinguished from calf whistles based on the extent of frequency modulation and were further classified into signature and non-signature whistles by comparison to a dictionary of known whistles. The average rate of maternal signature whistle production increased significantly from 0.02 whistles per dolphin-minute before the calves were born to 0.2 and 0.3 whistles in weeks 1 and 2, decreasing again to 0.06 in week 3 for the mother of the surviving calf. Percent maternal signature whistles changed similarly. Signature whistle production by non-mothers did not change when the calves were born. A likely function of this increase in maternal signature whistle production is that it enables the calf to learn to identify the mother in the first weeks of life.  相似文献   

8.
A signature whistle type is a learned, individually distinctive whistle type in a dolphin''s acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based.  相似文献   

9.
ABSTRACT

Bottlenose dolphins Tursiops truncatus produce individually distinctive signature whistles. Dolphins recognize the signature whistles of animals with which they share a social bond. Signature whistles develop within the first few months of life and are stable for a lifetime. Vocal learning appears to play a role in the development of signature whistles in bottlenose dolphins. The signature whistles of most female dolphins and about half of male dolphins differ from those of their mothers. Some dolphin calves born in captivity develop a signature whistle that matches either man-made whistles or those of an unrelated dolphin. Dolphins retain the ability as adults to imitate the whistles of animals with which they share strong individual-specific social relationships, bonds which may change throughout their lifetime. The exceptional imitative abilities of dolphin infants and the retention of this ability in adults may be related to the maintenance of changing individual specific social relationships. Individual recognition by the voice may differ in marine vs terrestrial mammals. Diving marine mammals may not be able to rely upon involuntary voice cues for individual recognition, but rather may require vocal learning to maintain a stable signature as their vocal tract changes shape with increasing pressure during a dive.  相似文献   

10.
Whistling bottlenose dolphins sometimes identify themselves with a concurrent bubblestream, and some researchers use these bubblestream whistles as their sole whistle sample. However, bubblestream whistles are not known to be representative of the entire repertoire. Bubblestreams and whistles were recorded from three captive female dolphins and their newborn calves. Bubblestreams were rare (0.13/min), with calves producing ten times as many as adults. Overall, 79% of bubblestreams were associated with whistles, but only 1 % of whistles were associated with bubblestreams. Bubblestream whistles were not independent: 49% occurred within 1 sec of another bubblestream, and 72% of these had the same contour as other bubblestream whistles in the bout. Bubblestream use was context-dependent: adults were more likely to bubblestream when caring for a calf ( P < 0.001), and calves were more likely to bubblestream when other calves were present ( P < 0.001). Bubblestreams were not associated with all whistle types. Bubblestream whistles were not evenly distributed across the clusters of a hierarchical cluster analysis of contour parameters using 300 randomly selected non-bubblestream whistles and 92 independent bubblestream whistles (10 clusters, P = 0.003). In conclusion, bubblestreams are rare visual cues that dolphins produce in association with certain whistles in certain contexts and are not representative of the dolphin's repertoire.  相似文献   

11.
Some dolphin species produce signature whistles, which may allow the identification of individual dolphins using passive acoustic monitoring (PAM). Identifying individuals by their sounds may enhance the opportunities for monitoring and addressing biological and ecological questions about these species. Here, we explored the potential of signature whistles to investigate ecological aspects of a resident bottlenose dolphin population. Using a limited data set, with few individuals recognized by signature whistles, combined with spatial capture-recapture (SCR) methods, we investigated how effective such approach is describing spatial use patterns and estimating density for this population. The data were collected using 4–6 stationary bottom-moored recorders. Since only eight signature whistles were identified, our density estimate may represent a subset of the entire population. However, even with only a few signature whistles identified, our results confirmed the center of the core area used by these dolphins as the area with the highest encounter probability. In addition, our results provided evidence that these dolphins have the same spatial use pattern at night as during the day. This study shows that SCR analysis of signature whistle data can improve our ecological knowledge and understanding of dolphin populations.  相似文献   

12.
We conducted playback experiments with wild bottlenose dolphins, Tursiops truncatus, to determine whether there is sufficient information in their individually distinctive signature whistles for individual recognition. We conducted experiments with members of a resident community of dolphins in waters near Sarasota, Florida, during temporary capture-release projects. We used a paired playback design, wherein the same two whistle sequences were predicted to evoke opposite responses from two different target animals. This design controlled for any unknown cues that may have been present in the playback stimuli. We predicted that mothers would respond more strongly to the whistles of their own independent offspring than to the whistles of a familiar, similar-aged nonoffspring. Similarly, we predicted that independent offspring would respond more strongly to the whistles of their own mother than to the whistles of a familiar, similar-aged female. Target animals were significantly (P<0.02) more likely to respond to the predicted stimuli, with responses measured by the number of head turns towards the playback speaker. In bottlenose dolphin societies, stable, individual-specific relationships are intermixed with fluid patterns of association between individuals. In primate species that live in similar 'fission-fusion' type societies, individual recognition is commonplace. Thus, when taken in the context of what is known about the social structure and behaviour of bottlenose dolphins, these playback experiments suggest that signature whistles are used for individual recognition. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

13.
Dolphins are adept at learning new vocalizations (whistles) throughout life, an ability thus far demonstrated in few nonhuman mammals. In dolphins, this ability is well documented in captivity but poorly studied in the wild, and little is known of its role in natural social behavior. This study documents the previously unknown phenomenon of whistle convergence among habituated free-living male bottlenose dolphins ( Tursiops sp.). Over a 4 yr study period, three male subjects formed an alliance, spending most of their time together and cooperating to herd females. Within individuals, whistle repertoires were more variable than expected based on previous studies, mostly performed with captive dolphins, but became less so during the course of the study. Among individuals, the distinctiveness of individual repertoires decreased such that the three males were virtually indistinguishable by the end of the study. Initially, some whistle types were shared. By the end of the study, the three males had formed a close alliance, and had all converged on one particular shared whistle form which they had rarely produced before forming the alliance. The results are discussed in terms of their implications for the prevailing 'signature whistle' hypothesis, as well as possible mechanisms and functional significance of whistle convergence among cooperating males.  相似文献   

14.
Whistles are key elements in the acoustic repertoire of bottlenose dolphins. In this species, the frequency contours of whistles are used as individual signatures. Assessing the long-lasting stability of such stereotyped signals, and the abundant production of non-stereotyped whistles in the wild, is relevant to a more complete understanding of their biological function. Additionally, studying the effects of group size and activity patterns on whistle emission rate may provide insights into the use of these calls. In this study, we document the decades-long occurrence of whistles with stereotyped frequency contours in a population of wild bottlenose dolphins, resident in the region of the Sado estuary, Portugal. Confirmed stereotypy throughout more than 20 years, and positive identification using the signature identification (SIGID) criteria, suggests that the identified stereotyped whistles are in fact signature whistles. The potential roles of non-stereotyped whistles, which represent 68 % of all whistles recorded, are still unclear and should be further investigated. Emission rates were significantly higher during food-related events. Finally, our data show a comparatively high overall whistle production for this population, and no positive correlation between group size and emission rates, suggesting social or environmental restriction mechanisms in vocal production.  相似文献   

15.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

16.
Data from behavioural observations and acoustic recordings of free-ranging bottlenose dolphins (Tursiops truncatus) were analysed to determine whether signature whistles are produced by wild undisturbed dolphins, and how whistle production varies with activity and group size. The study animals were part of a resident community of bottlenose dolphins near Sarasota, Florida, USA. This community of dolphins provides a unique opportunity for the study of signature-whistle production, since most animals have been recorded during capture-release events since 1975. Three mother-calf pairs and their associates were recorded for a total of 141.25 h between May and August of 1994 and 1995. Whistles of undisturbed dolphins were compared with those recorded from the same individuals during capture-release events. Whistles were conservatively classified into one of four categories: signature, probable signature, upsweep or other. For statistical analyses, signature and probable signature whistles were combined into a 'signature' category; upsweep and other whistles were combined into a 'non-signature' category. Both 'signature' and 'non-signature' whistle frequencies significantly increased as group size increased. There were significant differences in whistle frequencies across activity types: both 'signature' and 'non-signature' whistles were most likely to occur during socializing and least likely to occur during travelling. There were no significant interactions between group size and activity type. Signature and probable signature whistles made up ca. 52% of all whistles produced by these free-ranging bottlenose dolphins.  相似文献   

17.
Quantifying the vocal repertoire of a species is critical for subsequent analysis of signal functionality, geographic variation, and social relevance. However, the vocalizations of free‐ranging common dolphins (Delphinus sp.) have not previously been described from New Zealand waters. We present the first quantitative analysis of whistle characteristics to be undertaken on the New Zealand population. Acoustic data were collected in the Hauraki Gulf, North Island from 28 independent dolphin group encounters. A total of 11,715 whistles were collected from 105.1 min of recordings. Seven whistle contours were identified containing 29 subtypes. Vocalizations spanned from 3.2 to 23 kHz, with most whistles occurring between 11 and 13 kHz. Whistle duration ranged from 0.01 to 4.00 s (mean ± SD; 0.27 ± 0.32). Of the 2,663 whistles analyzed, 82% have previously been identified within U.K. populations. An additional six contours, apparently unique to New Zealand Delphinus were also identified. Data presented here offer a first insight into the whistle characteristics of New Zealand Delphinus. Comparisons with previously studied populations reveal marked differences in the whistle frequency and modulation of the New Zealand population. Interpopulation differences suggest behavior and the local environment likely play a role in shaping the vocal repertoire of this species.  相似文献   

18.
This study measured SPLs of whistles of wild bottlenose dolphins (Tursiops truncatus) in the Moray Firth, Scotland, and estimated their active space, i.e. the distance at which another dolphin can perceive the whistle of a conspecific. Whistling dolphins were localized with a dispersed hydrophone array by comparing differences in the times of arrival of a whistle at different hydrophones. The mean source level for whistles was 158 +/- 0.6 dB re. 1 microPa. The maximum was 169 dB re. 1 microPa. The active space of these whistles was calculated taking into account transmission loss, ambient noise, the critical ratios and the auditory sensitivity of this species. The estimated radius of the active space of unmodulated whistles between 3.5 kHz and 10 kHz produced at maximum source level ranged from 20 km to 25 km in a habitat of 10 m depth and at sea state 0. At sea state 4 it ranged from 14 km to 22 km. For whistles of 12 kHz it dropped to 1.5-4 km. The results suggest that whistles can be used to maintain group cohesion over large distances but also that dolphins that researchers consider to belong to separate groups might be in acoustic contact.  相似文献   

19.
The studies on the variation of acoustic communication in different species have provided insight that genetics, geographic isolation, and adaptation to ecological and social conditions play important roles in the variability of acoustic signals. The dolphin whistles are communication signals that can vary significantly among and within populations. Although it is known that they are influenced by different environmental and social variables, the factors influencing the variation between populations have received scant attention. In the present study, we investigated the factors associated with the acoustic variability in the whistles of common bottlenose dolphin (Tursiops truncatus), inhabiting two Mediterranean areas (Sardinia and Croatia). We explored which factors, among (a) geographical isolation of populations, (b) different environments in terms of noise and boat presence, and (c) social factors (including group size, behavior, and presence of calves), were associated with whistle characteristics. We first applied a principal component analysis to reduce the number of collinear whistle frequency and temporal characteristics and then generalized linear mixed models on the first two principal components. The study revealed that both geographic distance/isolation and local environment are associated with whistle variations between localities. The prominent differences in the acoustic environments between the two areas, which contributed to the acoustic variability in the first principal component (PC1), were found. The calf's presence and foraging and social behavior were also found to be associated with dolphin whistle variation. The second principal component (PC2) was associated only with locality and group size, showing that longer and more complex tonal sound may facilitate individual recognition and cohesion in social groups. Thus, both social and behavioral context influenced significantly the structure of whistles, and they should be considered when investigating acoustic variability among distant dolphin populations to avoid confounding factors.  相似文献   

20.
Indo-Pacific humpback dolphins (Sousa chinensis) use whistles to communicate with their conspecifics. Little is known about the acoustic repertoire of Indo-Pacific humpback dolphins in waters southwest of Hainan Island, a newly recorded population in 2014. In this study, whistles of Hainan humpback dolphin population were collected by using autonomous acoustic recorders. The fundamental frequencies and durations of whistles were in ranges of 0.71–21.35 kHz and 0.06–2.22 s, respectively. Significant intraspecific differences in duration and frequency of whistles were found between the Hainan population and the other geographically neighboring populations (in Chinese waters) or the population in Malaysia waters. Compared with other Sousa species, significant interspecific differences were also observed. Based on clustering analysis, the whistle parameters of neighboring populations were likely similar to each other. Significant differences were found between humpback dolphins in waters southwest of Hainan Island and those dolphins in the neighboring areas, supporting the hypothesis that this population may be independent. Ambient noise measurements in waters of Hainan Island, Zhanjiang, and Sanniang Bay showed that humpback dolphin populations may use whistles with longer duration, lower frequency, and fewer inflection points for more effective communication to adapt to a noisier environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号