首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Filamentous skeletons were liberated from isolated human erythrocyte membranes in Triton X-100, spread on fenestrated carbon films, negatively stained, and viewed intact and unfixed in the transmission electron microscope. Two forms of the skeleton were examined: (a) basic skeletons, stripped of accessory proteins with 1.5 M NaCl so that they contain predominantly polypeptide bands 1, 2, 4.1, and 5; and (b) unstripped skeletons, which also bore accessory proteins such as ankyrin and band 3 and small plaques of residual lipid. Freshly prepared skeletons were highly condensed. Incubation at low ionic strength and in the presence of dithiothreitol for an hour or more caused an expansion of the skeletons, which greatly increased the visibility of their elements. The expansion may reflect the opening of spectrin from a compact to an elongated disposition. Expanded skeletons appeared to be organized as networks of short actin filaments joined by multiple (5-8) spectrin tetramers. In unstripped preparations, globular masses were observed near the centers of the spectrin filaments, probably corresponding to complexes of ankyrin with band 3 oligomers. Some of these globules linked pairs of spectrin filaments. Skeletons prepared with a minimum of perturbation had thickened actin protofilaments, presumably reflecting the presence of accessory proteins. The length of these actin filaments was highly uniform, averaging 33 +/- 5 nm. This is the length of nonmuscle tropomyosin. Since there is almost enough tropomyosin present to saturate the F-actin, our data support the hypothesis that tropomyosin may determine the length of actin protofilaments in the red cell membrane.  相似文献   

2.
The disruption of erythyrocyte membrane cytoskeletons brought about by treatment with p-mercuribenzene sulphonate (PMBS) has been followed by measurements of turbidity and the binding of 203Hg-labelled PMBS. After pretreatment with N-ethylmaleimide to block readily reactive sulphydryl groups, incubation with [203Hg]PMBS showed incorporation of approximately 4 moles radiolabel per mole of spectrin and one per mole of actin. The incorporation of radiolabel paralleled the decrease in turbidity, and the labelling of spectrin paralleled that of actin. The kinetics were pseudo first order, and the pH dependence of the observed rate constant indicated a normal pKa value for the sulphydryl group involved. The calculated second-order rate constant for the reaction of the sulphydryl anion with PMBS, however, was several orders of magnitude less than expected from model compound studies. The results suggest that association between spectrin and actin may result in the steric hindrance of reactivity of a limited number of sulphydryl groups in each protein. Disruption of the spectrin-actin association may then be linked to the modification of the sulphydryl groups.  相似文献   

3.
We studied the structure and elasticity of membrane skeletons from human red blood cells (RBCs) during and after extraction of RBC ghosts with nonionic detergent. Optical tweezers were used to suspend individual cells inside a flow chamber, away from all surfaces; this procedure allowed complete exchange of medium while the low-contrast protein network of the skeleton was observed by high resolution, video-enhanced differential interference-contrast (DIC) microscopy. Immediately following extraction in a 5 mM salt buffer, skeletons assumed expanded, nearly spherical shapes that were uncorrelated with the shapes of their parent RBCs. Judging by the extent of thermal undulations and by their deformability in small flow fields, the bending rigidity of skeletons was markedly lower than that of either RBCs or ghosts. No further changes were apparent in skeletons maintained in this buffer for up to 40 min at low temperatures (T less than 10 degrees C), but skeletons shrank when the ionic strength of the buffer was increased. When the salt concentration was raised to 1.5 M, shrinkage remained reversible for approximately 1 min but thereafter became irreversible. When maintained in 1.5 M salt buffer for longer periods, skeletons continued to shrink, lost flexibility, and assumed irregular shapes: this rigidification was irreversible. At this stage, skeletons closely resembled those isolated in standard bulk preparations. We propose that the transformation to the rigid, irreversibly shrunken state is a consequence of spectrin dimer-dimer reconnections and that these structural rearrangements are thermally activated. We also measured the salt-dependent size of fresh and bulk extracted skeletons. Our measurements suggest that, in situ, the spectrin tethers are flexible, with a persistence length of approximately 10 nm at 150 mM salt.  相似文献   

4.
The oligomeric state of spectrin in the erythrocyte membrane skeleton of the rat was investigated following extraction in a low ionic strength buffer for 24 and 96 h. All analyses were quantitatively compared with preparations from human erythrocyte membranes. After nondenaturing agarose-polyacrylamide gel electrophoresis, the human samples revealed their characteristic spectrin oligomer pattern; there were high molecular weight complexes near the origin of the gel, followed by several high order oligomers, tetramers, and dimers. The pattern in the rat membrane skeleton also included tetramers and a high molecular weight complex band, but had only one oligomer and no dimers. With time the high molecular weight complex diminished and oligomers accumulated in both the rat and human, while dimers accumulated only in the human and tetramers accumulated only in the rat. Tetramers decreased with time in the human. Extraction of spectrin increased with time and was greater from rat than the human red cell membrane at both time points. The percentage of spectrin and actin in the low ionic strength extract was similar between species, as analyzed by SDS-polyacrylamide electrophoresis, staining, and densitometry. Proteins 4.1 and 4.9 were present in greater percentages in the human. The only temporal effect on monomeric protein composition was an increase of protein A in the rat. There was no species difference in protein A percentage at 24 h, but at 96 h the rat was greater than the human. The results suggest that there are significant differences in the structural arrangement of the rat and human erythrocyte membrane skeleton.  相似文献   

5.
A specific association between spectrin and the inner surface of the human erythrocyte membrane has been examined by measuring the binding of purified [32P]spectrin to inside out, spectrin-depleted vesicles and to right side out ghost vesicles. Spectrin was labeled by incubating erythrocytes with 32Pi, and eluted from the ghost membranes by extraction in 0.3 mM NaPO4, pH 7.6. [32P]Spectrin was separated from actin and other proteins and isolated in a nonaggregated state as a So20,w = 7 S (in 0.3 mM NaPO4) or So20,w = 8 S (in 20 mM KCl, 0.3 mM NaPO4) protein after sedimentation on linear sucrose gradients. Binding of [32P]spectrin to inverted vesicles devoid of spectrin and actin was at least 10-fold greater than to right side out membranes, and exhibited different properties. Association with inside out vesicles was slow, was decreased to the value for right side out vesicles at high pH, or after heating spectrin above 50 degrees prior to assay, and was saturable with increasing levels of spectrin. Binding to everted vesicles was rapid, unaffected by pH or by heating spectrin, and rose linearly with the concentration of spectrin. Scatchard plots of binding to inverted vesicles were linear at pH 7.6, with a KD of 45 microng/ml, while at pH 6.6, plots were curvilinear and consistent with two types of interactions with a KD of 4 and 19 microng/ml, respectively. The maximal binding capacity at both pH values was about 200 microng of spectrin/mg of membrane protein. Unlabeled spectrin competed for binding with 50% displacement at 27 microng/ml. [32P]Spectrin dissociated and associated with inverted vesicles with an identical dependence on ionic strength as observed for elution of native spectrin from ghosts. MgCl2, CaCl2 (1 to 4 mM) and EDTA (0.5 to 1 mM) had little effect on binding in the presence of 20 mM KCl, while at low ionic strength, MgCl2 (1 mM) increased binding and inhibited dissociation to the same extent as 10 to 20 mM KCl. Binding was abolished by pretreatment of vesicles with 0.1 M acetic acid, or with 0.1 microng/ml of trypsin. The periodic acid-Schiff-staining bands were unaffected by trypsin digestion which destroyed binding; mild digestion, which decreased binding only 50%, converted Band 3 almost completely to a membrane-bound 50,000-dalton fragment resistant to further proteolysis. These experiments suggest that attachment of spectrin to the cytoplasmic surface of the membrane results from a selective protein-protein interaction which is independent of erythrocyte actin. A direct role of the major sialoglycoprotein or Band 3 as a membrane binding site appears unlikely.  相似文献   

6.
The spectrin-based membrane skeleton plays an important role in determining the distributions and densities of receptors, ion channels, and pumps, thus influencing cell shape and deformability, cell polarity, and adhesion. In the paradigmatic human erythrocyte, short tropomodulin-capped actin filaments are cross-linked by spectrin into a hexagonal network, yet the extent to which this type of actin filament organization is utilized in the membrane skeletons of nonerythroid cells is not known. Here, we show that associations of tropomodulin and spectrin with actin in bovine lens fiber cells are distinct from that of the erythrocyte and imply a very different molecular organization. Mechanical disruption of the lens fiber cell membrane skeleton releases tropomodulin and actin-containing oligomeric complexes that can be isolated by gel filtration column chromatography, sucrose gradient centrifugation and immunoadsorption. These tropomodulin-actin complexes do not contain spectrin. Instead, spectrin is associated with actin in different complexes that do not contain tropomodulin. Immunofluorescence staining of isolated fiber cells further demonstrates that tropomodulin does not precisely colocalize with spectrin along the lateral membranes of lens fiber cells. Taken together, our data suggest that tropomodulin-capped actin filaments and spectrin-cross-linked actin filaments are assembled in distinct structures in the lens fiber cell membrane skeleton, indicating that it is organized quite differently from that of the erythrocyte membrane skeleton.  相似文献   

7.
The spectrin-actin junction of erythrocyte membrane skeletons   总被引:30,自引:0,他引:30  
High-resolution electron microscopy of erythrocyte membrane skeletons has provided striking images of a regular lattice-like organization with five or six spectrin molecules attached to short actin filaments to form a sheet of five- and six-sided polygons. Visualization of the membrane skeletons has focused attention on the (spectrin)5,6-actin oligomers, which form the vertices of the polygons, as basic structural units of the lattice. Membrane skeletons and isolated junctional complexes contain four proteins that are stable components of this structure in the following ratios: 1 mol of spectrin dimer, 2-3 mol of actin, 1 mol of protein 4.1 and 0.1-0.5 mol of protein 4.9 (numbers refer to mobility on SDS gels). Additional proteins have been identified that are candidates to interact with the junction, based on in vitro assays, although they have not yet been localized to this structure and include: tropomyosin, tropomyosin-binding protein and adducin. The spectrin-actin complex with its associated proteins has a key structural role in mediating cross-linking of spectrin into the network of the membrane skeleton, and is a potential site for regulation of membrane properties. The purpose of this article is to review properties of known and potential constituent proteins of the spectrin-actin junction, regulation of their interactions, the role of junction proteins in erythrocyte membrane dysfunction, and to consider aspects of assembly of the junctions.  相似文献   

8.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

9.
Band 3 tyrosine kinase. Association with the human erythrocyte membrane   总被引:1,自引:0,他引:1  
Band 3, the anion transport protein of the human erythrocyte membrane, is known to be phosphorylated in ghosts at tyrosine 8. The band 3 tyrosine kinase is now shown to be associated with the Triton X-100 insoluble membrane skeleton but not with spectrin or actin. The kinase was reversibly dissociated from membranes and skeletons at elevated ionic strength (50% at mu = 0.15). The binding capacity of the membranes exceeded their native complement of the kinase by at least 60-fold. Prior removal of all peripheral proteins from the cytoplasmic surface of inside-out vesicles did not diminish the rebinding of the kinase, whereas prior removal of band 3 and other accessory proteins from skeletons abolished the rebinding of the kinase. An excess of glyceraldehyde-3-P dehydrogenase, which binds to band 3 in the region of the phosphate acceptor tyrosine 8, both inhibited the phosphorylation of band 3 and released the kinase into solution. Soluble 40/45-kDa chymotryptic fragments from the cytoplasmic pole of band 3 were phosphorylated at least as well as membranous band 3 and caused the release of the kinase from Triton-extracted skeletons. Membrane skeletons lacked most of the membrane band 3, but retained most of the kinase. Nevertheless, the band 3 population solubilized by Triton X-100 from prelabeled ghosts was as well phosphorylated as the population of band 3 retained by the skeletons. Furthermore, the fraction of band 3 not associated with the skeletons following Triton X-100 extraction was a good substrate for the solubilized kinase. We conclude that this tyrosine kinase is reversibly bound to the membrane through electrostatic interactions with the polyacidic sequence surrounding the phosphate accepting tyrosine 8 on band 3. The kinase appears to be preferentially linked to those band 3 molecules associated with the membrane skeleton, but it impartially phosphorylates band 3 species free in the bilayer as well as band 3 fragments in solution. The resemblance of its plasma membrane binding behavior to that of tyrosine kinases of certain viruses causing oncogenic transformation is discussed.  相似文献   

10.
Transbilayer phospholipid distribution, membrane skeleton dissociation/association, and spectrin structure have been analysed in human erythrocytes after subjecting them to heating at 50 degrees C for 15 min. The membrane skeleton dissociation/association was determined by measuring the Tris-induced dissociation of Triton-insoluble membrane skeletons (Triton shells), the spectrin-actin extractability under low ionic conditions, and the binding of spectrin-actin with normal erythrocyte membrane inside-out vesicles (IOVs). The spectrin structure was ascertained by measuring the spectrin dimer-to-tetramer ratio as well as the spectrin tryptophan fluorescence. Both the Tris-induced Triton shell dissociation and the spectrin-actin extractability under low ionic conditions were considerably reduced by the heat treatment. Also, the binding of heated erythrocyte spectrin-actin to IOVs was significantly smaller than that observed with the normal cell spectrin-actin. Further, the quantity of spectrin dimers was appreciably increased in heat-treated erythrocytes as compared to the normal cells. This change in the spectrin dimer-to-tetramer ratio was accompanied by marked changes in the spectrin tryptophan fluorescence. In spite of these heat-induced alterations in structure and bilayer interactions of the membrane skeleton, the inside-outside glycerophospholipid distribution remained virtually unaffected in the heat-treated cells, as judged by employing bee venom and pancreatic phospholipase A2, fluorescamine and Merocyanine 540 as the external membrane probes. These results strongly indicate that membrane bilayer-skeleton interaction is not the major factor in determining the transbilayer phospholipid asymmetry in human erythrocyte membrane.  相似文献   

11.
The disruption of erythyrocyte membrane cytoskeletons brought about by treatment with p-mercuribenzene sulphonate (PMBS) has been followed by measurements of turbidity and the binding of 203Hg-labelled PMBS. After pretreatment with N-ethylmaleimide to block readily reactive sulphydryl groups, incubation with [203Hg]PMBS showed incorporation of approximately 4 moles radiolabel per mole of spectrin and one per mole of actin. The incorporation of radiolabel paralleled the decrease in turbidity, and the labelling of spectrin paralleled that of actin. The kinetics were pseudo first order, and the pH dependence of the observed rate constant indicated a normal pKa value for the sulphydryl group involved. The calculated second-order rate constant for the reaction of the sulphydryl anion with PMBS, however, was several orders of magnitude less than expected from model compound studies. The results suggest that association between spectrin and actin may result in the steric hindrance of reactivity of a limited number of sulphydryl groups in each protein. Disruption of the spectrin-actin association may then be linked to the modification of the sulphydryl groups.  相似文献   

12.
We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.  相似文献   

13.
Myelin membranes purified from bovine brain are shown to form membrane vesicles when incubated in hypotonic buffer. Following restoration of isotonicity a resealing of the membrane occurs as judged by a significant decrease in 22Na+ permeability. Electron spin resonance measurements using stearic acid spin label I indicate a small decrease in membrane fluidity with increasing ionic strength between 50 and 80 mM NaCl. Iodination of myelin membrane vesicles by lactoperoxidase shows a four-fold increase in the amount of iodine incorporation into the myeline basic protein from 0--150 mM NaCl, while the iodination of the proteolipid protein remains essentially unaffected by the change in ionic strength. This dependence of the iodination of the myelin basic protein on the ionic strength can be explained by the electrostatic interactions of this protein with membrane lipids. In view of striking analogies with studies on model membranes correlating protein binding with membrane permeability changes, we suggest a similar structure-function relationship for the myelin basic protein.  相似文献   

14.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

15.
Myelin membranes purified from bovine brain are shown to form membrane vesicles when incubated in hypotonic buffer. Following restoration of isotonicity a resealing of the membrane occurs as judged by a significant decrease in 22Na+ permeability. Electron spin resonance measurements using stearic acid spin label I indicate a small decrease in membrane fluidity with increasing ionic strength between 50 and 80 mM NaCl. Iodination of myelin membrane vesicles by lactoperoxidase shows a four-fold increase in the amount of iodine incorporation into the myelin basic protein from 0–150 mM NaCl, while the iodination of the proteolipid protein remains essentially unaffected by the change in ionic strength. This dependence of the iodination of the myelin basic protein on the ionic strength can be explained by the electrostatic interactions of this protein with membrane lipids. In view of striking analogies with studies on model membranes correlating protein binding with membrane permeability changes, we suggest a similar structure-function relationship for the myelin basic protein.  相似文献   

16.
Casein kinase I binding to rat liver plasma membrane was rapidly released from membrane by increasing the ionic strength above physiological level. The released activities at 250-300 mM NaCl were 3-4-fold higher than those obtained under lower ionic strength below 100 mM NaCl. This reaction occurred nonenzymatically and was reversible. By lowering the ionic strength from 250 mM to 50 mM NaCl by dilution at least 50% of the released enzyme was rebound to plasma membrane. By gel filtration analysis, most of the released enzyme activity under higher NaCl concentration was recovered around the molecular mass of 35,000 which corresponded to that of casein kinase I. This enzyme showed the tendency to aggregate under lower ionic strength (50 mM NaCl), but existed as monomer under higher ionic strength (250 mM NaCl). These results suggest that the release of casein kinase I from plasma membrane and the rebinding to membrane induced by the alteration of ionic strength seem to be an important regulatory mechanism in determining the subcellular distribution of this enzyme.  相似文献   

17.
Properties of talin from chicken gizzard smooth muscle   总被引:9,自引:0,他引:9  
This paper describes the structural and biochemical characterization of talin, a protein localized to various cellular sites where bundles of actin filaments attach to the plasma membrane. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a molecular mass of 225,000 +/- 5,000 daltons. Hydrodynamic measurements at protein concentrations less than 0.72 mg/ml indicate a monomeric protein with a native molecular mass of 213,000 +/- 15,000 daltons. Sedimentation equilibrium experiments indicate self-association at protein concentrations of 0.72 mg/ml and higher. The data suggest that this self-association is a simple monomer:dimer equilibrium over the range of concentrations observed. At low protein concentrations where talin is a monomer, the Stokes radius and sedimentation coefficient vary with ionic strength. Under low ionic strength conditions (5-20 mM NaCl), talin has a Stokes radius of 6.5 nm and a sedimentation value of 9.4, suggesting an asymmetric globular molecule; whereas under high ionic strength conditions (200 mM NaCl), the Stokes radius increases to 7.7 nm and the sedimentation coefficient decreases to 8.8, suggesting a more elongated protein. This conformation change is confirmed by electron microscopy which reveals a more globular protein at low ionic strength which unfolds to become an elongated flexible molecule as the ionic strength is increased to physiological and higher levels. The amino acid composition of talin indicates a low level of aromatic residues, consistent with its relatively low extinction coefficient, talin has an isoelectric point between pH 6.7 and 6.8 based on isoelectric focusing. The detailed purification of talin is described.  相似文献   

18.
The polymerization of pyrene-labelled skeletal muscle actin has been monitored in the presence of chromatographically purified spectrin dimers and tetramers. A small but consistent effect of spectrin binding on the critical concentration was observed for actin polymerized in the presence of 1 mM MgCl2. These data were analysed using the principle of linked functions. Spectrin binds exclusively to the filamentous form of actin, and thereby stabilizes F-actin with respect to the G-form. The decrease in the critical concentration for actin polymerization, in the presence of spectrin, has been shown to be consistent with an equilibrium constant for the binding of spectrin to individual promoters within F-actin of approximately 8 X 10(5) M-1 at 23 degrees C, and an ionic strength of 7 mM.  相似文献   

19.
Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. alpha-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcgammaRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.  相似文献   

20.
We have examined fragments of the filamentous network underlying the human erythrocyte membrane by high-resolution electron microscopy. Networks were released from ghosts by extraction with Triton X-100, freed of extraneous proteins in 1.5 M NaCl, and collected by centrifugation onto a sucrose cushion. These preparations contained primarily protein bands 1 + 2 (spectrin), band 4.1 and band 5 (actin). The networks were partially disassembled by incubation at 37 degrees C in 2 mM NaPi (pH 7), which caused the preferential dissociation of spectrin tetramers to dimers. The fragments so generated were fractionated by gel filtration chromatography and visualized by negative staining with uranyl acetate on fenestrated carbon films. Unit complexes, which sedimented at approximately 40S, contained linear filaments approximately 7-8 nm diam from which several slender and convoluted filaments projected. The linear filaments had a mean length of 52 +/- 17 nm and a serrated profile reminiscent of F-actin. They could be decorated in an arrowhead pattern with S1 fragments of muscle heavy meromyosin which, incidentally, displaced the convoluted filaments. Furthermore, the linear filaments nucleated the polymerization of rabbit muscle G-actin, predominantly but not exclusively from the fast-growing ends. On this basis, we have identified the linear filaments as F-actin; we infer that the convoluted filaments are spectrin. Spectrin molecules were usually attached to actin filaments in clusters that showed a preference for the ends of the F-actin. We also observed free globules up to 15 nm diam, usually associated with three spectrin molecules, which also nucleated actin polymerization; these may be simple junctional complexes of spectrin, actin, and band 4.1. In larger ensembles, spectrin tetramers linked actin filaments and/or globules into irregular arrays. Intact networks were an elaboration of the basic pattern manifested by the fragments. Thus, we have provided ultrastructural evidence that the submembrane skeleton is organized, as widely inferred from less direct information, into short actin filaments linked by multiple tetramers of spectrin clustered at sites of association with band 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号