首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
DNA sequences were determined for three cDNA clones encoding vesicular stomatitis virus glycoproteins from the tsO45 mutant (which encodes a glycoprotein that exhibits temperature-sensitive cell-surface transport), the wild-type parent strain, and a spontaneous revertant of tsO45. The DNA sequence analysis showed that as many as three amino acid changes could be responsible for the transport defect. By recombining the cDNA clones in vitro and expressing the recombinants in COS cells, we were able to trace the critical lesion in tsO45 to a single substitution of a polar amino acid (serine) for a hydrophobic amino acid (phenylalanine) in a hydrophobic domain. We suggest that this nonconservative substitution may block protein transport by causing protein denaturation at the nonpermissive temperature. Comparison of the predicted glycoprotein sequences from two vesicular stomatitis virus strains suggests a possible basis for the differential carbohydrate requirement in transport of the two glycoproteins.  相似文献   

2.
Five temperature-sensitive mutants of influenza virus A/FPV/Rostock/34 (H7N1), ts206, ts293, ts478, ts482, and ts651, displaying correct hemagglutinin (HA) insertion into the apical plasma membrane of MDCK cells at the permissive temperature but defective transport to the cell surface at the restrictive temperature, have been investigated. Nucleotide sequence analysis of the HA gene of the mutants and their revertants demonstrated that with each mutant a single amino acid change is responsible for the transport block. The amino acid substitutions were compared with those of mutants ts1 and ts227, which have been analyzed previously (W. Schuy, C. Will, K. Kuroda, C. Scholtissek, W. Garten, and H.-D. Klenk, EMBO J. 5:2831-2836, 1986). With the exception of ts206, the changed amino acids of all mutants and revertants accumulate in three distinct areas of the three-dimensional HA model: (i) at the tip of the 80-A (8-nm)-long alpha helix, (ii) at the connection between the globular region and stem, and (iii) in the basal domain of the stem. The concept that these areas are critical for HA assembly and hence for transport is supported by the finding that the mutants that are unable to leave the endoplasmic reticulum at the nonpermissive temperature do not correctly trimerize. Upon analysis by density gradient centrifugation, cross-linking, and digestion with trypsin and endoglucosaminidase H, two groups can be discriminated among these mutants: with ts1, ts227, and ts478, the HA forms large irreversible aggregates, whereas with ts206 and ts293, it is retained in the monomeric form in the endoplasmic reticulum. With a third group, comprising mutants ts482 and ts651 that enter the Golgi apparatus, trimerization was not impaired.  相似文献   

3.
The reovirus group C temperature-sensitive mutant tsC447, whose defect maps to the S2 gene, which encodes the major core protein sigma 2, fails to assemble core particles at the nonpermissive temperature. To identify other proteins that may interact with sigma 2 during assembly, we generated and examined 10 independent revertants of the mutant. To determine which gene(s) carried a compensatory suppressor mutation(s), we generated intertypic reassortants between wild-type reovirus serotype 1 Lang and each revertant and determined the temperature sensitivities of the reassortants by efficiency-of-plating assays. Results of the efficiency-of-plating analyses indicated that reversion of the tsC447 defect was an intragenic process in all revertants. To identify the region(s) of sigma 2 that had reverted, we determined the nucleotide sequences of the S2 genes. In all revertant sequences examined, the G at nucleotide position 1166 in tsC447 had reverted to the A present in the wild-type sequence. This reversion leads to the restoration of a wild-type asparagine (in place of a mutant aspartic acid) at amino acid 383 in the sigma 2 sequence. These results collectively indicate that the functional lesion in tsC447 is Asp-383 and that this lesion cannot be corrected by alterations in other core proteins. These observations suggest that this region of sigma 2, which may be important in mediating assembly of the core particle, does not interact significantly with other reovirus proteins.  相似文献   

4.
Mutants ts1 and ts227 of fowl plague virus have a temperature-sensitive defect in the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus. The primary structure of the hemagglutinin of the mutants and of a number of revertants derived from them has been analysed by nucleotide sequencing. The transport block of the hemagglutinin of ts227 can be attributed to a single amino acid exchange. It involves the replacement of aspartic acid at position 457 by asparagine thereby introducing a new glycosylation site which appears to be located in a cryptic position in the lower part of the hemagglutinin stalk. Attachment of carbohydrate to this site is temperature-dependent. At permissive temperature only a small fraction of the monomers (approximately 30%) is glycosylated in this position, whereas at nonpermissive temperature this is the case with all subunits. The data suggest that under the latter conditions the new oligosaccharide interferes by steric hindrance with the trimerization of the hemagglutinin. The hemagglutinin of ts1 has an essential amino acid exchange at position 275 where serine is replaced by glycine. This substitution may increase the flexibility of the molecule in the hinge region between the globular domain and the stalk. The exchange of a conserved glutamic acid residue at position 398 that is involved in the interaction between different monomers contributes also to the structural instability of the ts1 hemagglutinin. These observations support the notion that the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus depends on trimer assembly.  相似文献   

5.
Genetic Analysis of Bacteriophage P22 Lysozyme Structure   总被引:1,自引:0,他引:1       下载免费PDF全文
D. Rennell  A. R. Poteete 《Genetics》1989,123(3):431-440
The suppression patterns of 11 phage P22 mutants bearing different amber mutations in the gene encoding lysozyme (19) were determined on six different amber suppressor strains. Of the 60 resulting single amino acid substitutions, 18 resulted in defects in lysozyme activity at 30 degrees; an additional seven were defective at 40 degrees. Revertants were isolated on the "missuppressing" hosts following UV mutagenesis; they were screened to distinguish primary- from second-site revertants. It was found that second-site revertants were recovered with greater efficiency if the UV-irradiated phage stocks were passaged through an intermediate host in liquid culture rather than plated directly on the nonpermissive host. Eleven second-site revertants (isolated as suppressors of five deleterious substitutions) were sequenced: four were intragenic, five extragenic; three of the extragenic revertants were found to have alterations near and upstream from gene 19, in gene 13. Lysozyme genes from the intragenic revertant phages were introduced into unmutagenized P22, and found to confer the revertant plating phenotype.  相似文献   

6.
A single-gene reassortant bearing the PB2 gene of the A/Ann Arbor/6/60 cold-adapted virus in the background of the A/Korea/82 (H3N2) wild-type virus is a temperature-sensitive (ts) virus with an in vitro shutoff temperature of 38 degrees C. A single mutation at amino acid (aa) at 265 (Asp-Ser) of the PB2 protein is responsible for the ts phenotype. This ts single-gene PB2 reassortant virus was serially passaged at elevated temperatures in Madin-Darby canine kidney cells to generate ts+ phenotypic revertant viruses. Four ts+ phenotypically revertant viruses were derived independently, and each possessed a shutoff temperature for replication in vitro of > 40 degrees C. Each of the four phenotypically revertant viruses replicated efficiently in the upper and lower respiratory tracts of mice and hamsters, unlike the PB2 single-gene reassortant virus, confirming that the ts phenotype was responsible for the attenuation of this virus in rodents. Mating the ts+ revertants with wild-type virus yielded ts progeny in high frequency, indicating that the loss of ts phenotype was due to a suppressor mutation which was mapped to the PA gene in each of the four independently derived ts phenotypic revertants. Nucleotide sequence analysis confirmed the absence of new mutations on the PB2 gene and the presence of predicted amino acid changes in the PA proteins of the revertant viruses. These studies suggest that single amino acid changes at aa 245 (Glu-Lys) or 347 (Asp-Asn) of the PA protein can completely suppress the ts and attenuation phenotypes specified by the Asp-Ser mutation at aa 265 of the PB2 protein of the A/Ann Arbor/6/60 cold-adapted virus.  相似文献   

7.
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.  相似文献   

8.
Second-Site Revertants of Escherichia Coli Trp Repressor Mutants   总被引:5,自引:2,他引:3  
L. S. Klig  D. L. Oxender    C. Yanofsky 《Genetics》1988,120(3):651-655
Second-site reversion studies were performed with five missense mutants with defects in the trp repressor of Escherichia coli. These mutants were altered throughout the gene. The same unidirectional mutagen used in the isolation of these mutants, hydroxylamine, was used in reversion studies, to increase the liklihood that the revertants obtained would have second-site changes. Most of the second-site revertants were found to have the same amino acid substitutions detected previously as superrepressor changes. These second-site revertant repressors were more active in vivo than their parental mutant repressors, in the presence or absence of exogenous tryptophan. Apparently superrepressor changes at many locations in this protein can act globally to increase the activity of mutant repressors.  相似文献   

9.
The temperature sensitive leucyl-tRNA synthetase mutant tsHl and two revertants have been compared to the parental Chinese hamster ovary cells with respect to the effects of amino acid concentrations in the medium on growth. Elevating the leucine concentration 30- or 100-fold allowed tsHl to grow exponentially at 38.5 degrees C, normally the nonpermissive temperature. Partial revertants that had recovered some enzyme activity required smaller supplements for growth. Measurements of the leucine pools indicated that they respond directly to the extracellular leucine concentration and may mediate the effect. Use of combinations of amino acids confirmed that isoleucine has a similar though weaker effect on tsHl and identified an even weaker protection by valine. The triple combination of leucine, isoleucine and valine was a much more efficient medium supplement and three times normal concentrations of these amino acids supported growth of tsHl at 38.5 degrees C. It is postulated that they are acting at their respective aminoacyl-tRNA synthetases to help stabilize a complex which also contains the mutant leucyl-tRNA synthetase. The pool size measurements also showed that the leucine pools of tsHl and a revertant increased 2-fold more in a response to increased temperature than those of WT. It is suggested that this is a regulatory response to low leucyl-tRNA synthetase activity and is important in determining growth phenotypes.  相似文献   

10.
Phenotypic wild-type revertants from a UV-irradiated temperature-sensitive late mutant (ts BC245) of simian virus 40 (SV40) were isolated after replication in monkey cells at the nonpermissive temperature. The mutations occurring in 7 revertants were identified by DNA sequence analysis of the entire gene involved. All 10 mutations identified constituted single base substitutions, 7 of which occurred opposite pyrimidine doublets. Transitions were 3 times more abundant than transversions. Three base changes did not occur opposite pyrimidine-pyrimidine sequences. Exchange of a DNA fragment harbouring the altered base from a revertant with the corresponding fragment from the parental virus, showed that the base substitution was indeed responsible for the reversions to the wild-type phenotype (growth at the restrictive temperature). The data suggest that most base substitutions in highly UV-irradiated simian virus 40 are targeted at sites comprising two adjacent pyrimidines.  相似文献   

11.
Histidinol dehydrogenase from three differing revertants of ICR-191A-induced frameshift hisD3018 has been purified and examined for amino acid replacements. The enzyme from one spontaneously arising revertant, R7, contains an extra proline residue, whereas that from another, R5, contains an extensive frameshifted sequence, four amino acid residues of which have been identified to date. The amino acid replacement data are in agreement with the in vitro code word assignments and allow the characterization of the hisD3018 frameshift as an addition of one nucleotide pair, most likely guanine plus cytosine. Enzymatic data for those ICR-191A-induced revertants of hisD3018 arising within the hisD gene indicate that the enzyme is wild type and, therefore, that ICR-191A can cause deletions as well as additions of single base pairs. The wild-type amino acid sequence is restored in enzyme from an N-methyl-N′-nitro-N-nitrosoguanidine (NG)-induced revertant, R29, suggesting that NG is a base-deleting as well as a base-substituting mutagen. The unusual response of hisD3018 to external suppressors is considered in terms of reinitiation of protein synthesis out of phase, coupled with suppression of a nonpermissive missense codon so generated, and of an alternative hypothesis invoking a true frameshift suppressor transfer ribonucleic acid with an extended or deleted anticodon.  相似文献   

12.
The Alb4 mutant of the coronavirus mouse hepatitis virus (MHV) is both temperature sensitive and thermolabile owing to a deletion in the gene encoding its nucleocapsid (N) protein. The deletion removes 29 amino acids that constitute a putative spacer region preceding the carboxyl-terminal domain of the protein. As a step toward understanding the structure and function of the MHV N protein, we isolated multiple independent revertants of Alb4 that totally or partially regained the ability to form large (wild-type-sized) plaques at the nonpermissive temperature. The N proteins of these revertant viruses concomitantly regained the ability to bind to RNA in vitro at a temperature that was restrictive for RNA binding by Alb4 N protein. Sequence analysis of the N genes of the revertants revealed that each contained a single second-site point mutation that compensated for the effects of the deletion. All reverting mutations were clustered within a stretch of 40 amino acids centered some 80 residues on the amino side of the Alb4 deletion, within a domain to which the RNA-binding activity of N had been previously mapped. By means of a targeted RNA recombination method that we have recently developed, two of the reverting mutations were introduced into a wild-type MHV genomic background. The resulting recombinants were stable and showed no gross phenotypic differences from the wild type. A detailed analysis of one, however, revealed that it was at a selective disadvantage with respect to the wild type.  相似文献   

13.
Nucleocytoplasmic transport of mRNA is essential for eukaryotic gene expression. However, how mRNA is exported from the nucleus is mostly unknown. To elucidate the mechanisms of mRNA transport, we took a genetic approach to identify genes, the products of which play a role in that process. From about 1000 temperature -sensitive (ts- or cs-) mutants, we identified five ts- mutants that are defective in poly(A)+ RNA transport by using a situ hybridization with an oligo(dT)50 as a probe. These mutants accumulate poly(A)+ RNA in the nuclei when shifted to a nonpermissive temperature. All five mutations are tightly linked to the ts- growth defects, are recessive, and fall into four different groups designated as ptr 1-4 (poly(A)+ RNA transport). Interestingly, each group of mutants has a differential localization pattern of poly(A)+ RNA in the nuclei at the nonpermissive temperature, suggesting that they have defects at different steps of the mRNA transport pathway. Localization of a nucleoplasmin-green fluorescent protein fusion suggests that ptr2 and ptr3 have defects also in nuclear protein import. Among the isolated mutants, only ptr2 showed a defect in pre-mRNA splicing. We cloned the ptr2+ and ptr3+ genes and found that they encode Schizosaccharomyces pombe homologues of the mammalian RCC1, a guanine nucleotide exchange factor for RAN/TC4, and the ubiquitin-activating enzyme E1 involved in ubiquitin conjugation, respectively. The ptr3+ gene is essential for cell viability, and Ptr3p tagged with green fluorescent protein was localized in both the nucleus and the cytoplasm. This is the first report suggesting that the ubiquitin system plays a role in mRNA export.  相似文献   

14.
At a nonpermissive temperature, the group D temperature-sensitive mutants of Newcastle disease virus strain Australia-Victoria (AV) are defective in plaque formation, in inducing infected cells to fuse, and in incorporating the cleaved fusion glycoprotein, F1 + F2, into virus particles. In this study, the F protein of AV, expressed in chicken embryo cells, was able to complement these mutants in a plaque assay, identifying the F gene as the gene containing the group D temperature-sensitive lesions. The F genes of mutants D1, D2, and D3 were found to contain single mutations relative to the AV sequence, clustered within a predicted amphipathic alpha helix (AAH) adjacent to the hydrophobic amino terminus of F1. These mutant F proteins were inefficiently processed at the permissive temperature, a problem that was exacerbated at the nonpermissive temperature. Surprisingly, the AV F protein was also found to be partially temperature sensitive in processing. Its AAH is predicted to contain a break in the helix close to the D mutation sites, which are themselves predicted to further weaken the helix at this point. Interestingly, six revertants of the group D mutants were found to have an additional lesion in the AAH, repairing both the AV and mutant helices, resulting in a predicted perfect helix. The F protein of these revertants had overcome both the processing defects of the mutants and the temperature sensitivity of AV, indicating that the AAH region is critical for F protein processing. The lesions of a second group of revertants were localized within F2, suggesting an interaction with the F1 AAH region containing the original lesion.  相似文献   

15.
Spontaneously arising morphological revertants of the adenovirus type 12 (Ad12)-transformed hamster cell line T637 had been previously isolated, and it had been demonstrated that in these revertants varying amounts of the integrated Ad12 genome were eliminated from the host genome. In this report, the patterns of persistence of the viral genome in the revertants were analyzed in detail. In some of the revertant cell lines, F10, TR3, and TR7, all copies of Ad12 DNA integrated in line T637 were lost. In lines TR1, -2, -4 to -6, -8 to -10, and -13 to -16, only the right-hand portion of one Ad12 genome was preserved; it consisted of the intact right segment of Ad12 DNA and was integrated at the same site as in line T637. In revertant lines G12, TR11, and TR12, one Ad12 DNA and varying parts of a second viral DNA molecule persisted in the host genome. These patterns of persistence of Ad12 DNA molecules in different revertants supported a model for a mode of integration of Ad12 DNA in T637 hamster cells in which multiple (20 to 22) copies of the entire Ad12 DNA were serially arranged, separated from each other by stretches of cellular DNA. The occurrence of such revertants demonstrated that foreign DNA sequences could not only be acquired but could also be lost from eucaryotic genomes. There was very little, if any, expression of Ad12-specific DNA sequences in the revertant lines TR7 and TR12. Moreover, Ad12 DNA sequences which were found to be undermethylated in line T637 were completely methylated in the revertant cell lines G12, TR11, TR12, and TR2. These findings were consistent with the absence of T antigen from the revertant lines reported earlier. Hence it was conceivable that the expression of integrated viral DNA sequences was somehow dependent on their positions in the cellular genome. In cell line TR637, the early segments of Ad12 DNA were expressed and undermethylated; conversely, in the revertant lines G12, TR11, TR12, and TR2, the same segments appeared to be expressed to a limited extent and were strongly methylated.  相似文献   

16.
I am investigating the role of protein folding in the transport of influenza virus hemagglutinin (HA), a membrane-bound protein, along the exocytotic pathway. From a previous work (Gething, M.-J., McCammon, K., and Sambrook, J. (1986) Cell 46, 939-950), it has been shown that a subset of alterations of the COOH-terminal sequences of the HA molecule inhibit folding and impede its transport to the cell surface. Current studies establish that the integrity of the NH2-terminal sequences of the HA is essential for assembly and transport of the molecule. Mutants lacking just 1 or 2 amino acids immediately COOH-terminal to the signal cleavage site are translocated and core glycosylated, but also incorrectly folded. The mutant molecules are not terminally glycosylated and are thus confined inside the cells. A hypothesis will be presented to explain why sequences at opposite ends of the HA molecule are essential for the assembly of native structures and why correct folding is necessary for transport along the exocytotic pathway of mammalian cells.  相似文献   

17.
以重组的蒙古鸭H5N2禽流感病毒A/Duck/Mongolia/54/01的血凝素HA蛋白的cDNA为模板,进行PCR随机突变,表达只有单个氨基酸突变的H5HA基因共计38个.根据红细胞吸附反应,分析这些突变HA的功能,仍然具有红细胞吸附活性的单个氨基酸突变的HA约占89%,说明H5HA单个氨基酸突变的容许率是相当高的.HA1区突变数目大约是HA2区的两倍.对失去红细胞吸附功能和某些仍然拥有红细胞吸附功能的HA及单个氨基酸突变的位置与结构的关系进行探讨.有两个位点氨基酸突变了两次,但都不影响红细胞吸附功能,对红细胞吸附功能的影响,似乎主要由位置决定,而不是取决于取代的氨基酸的种类.位点179位和122位的突变是不允许的;位点179位于H5N1的受体结合区域RBD内,122位位于A抗原决定簇区附近,推测在H5HA三维结构上,这两个位点位于HA分子的内部,维持着H5HA的结构.HA1Cys位点4和HA2Cys位点148的突变是不允许的.这两个Cys正好形成HA1和HA2连接的桥梁,对维持H5HA结构也是相当重要的.本实验中HA先后失去了三个糖基化位点,但并不影响吸附红细胞的功能.总之,通过实验分析以研究某些氨基酸改变的效果,寻找关键位点是否突变,可以作为评估H5N1野毒株大流行潜力的分子标志.  相似文献   

18.
Twenty-five spontaneous temperature-stable revertants of four different temperature-sensitive (ts) M protein mutants (complementation group III: tsG31, tsG33, tsO23, and tsO89) were sequenced and tested for their ability to inhibit vesicular stomatitis virus RNA polymerase activity in vitro. Consensus sequences of the coding region of each M protein gene were determined, using total viral RNA as template. Fifteen different sequences were found among the 25 revertants; 14 differed from their ts parent by a single amino acid (one nucleotide), and 1 differed by two amino acids (two nucleotides). Amino acids were altered in various positions between residues 64 and 215, representing over 60% of the polypeptide chain. Resequencing of the Glasgow and Orsay wild types and the four ts mutants confirmed previously published differences (Y. Gopalakrishana and J. Lenard, J. Virol., 56:655-659, 1985), and one or two additional differences were found in each. The relative charges of the revertant M proteins, as determined by nonequilibrium pH gradient electrophoresis, were consistent with the deduced sequences in every case. The ability of each revertant M protein to inhibit the RNA polymerase activity of nucleocapsids prepared from its parent ts mutant was also tested. Only 13 of the 25 revertants had M protein with high (wild type-like) polymerase-inhibiting activity, while 5 had low (ts-like) activity, and 7 had intermediate activity, demonstrating that this property is not an essential concomitant of the temperature-stable phenotype. It is concluded that the high reversion frequency observed for these mutants arises from a very high incidence of pseudoreversion, i.e., many different molecular changes can repair the ts phenotype.  相似文献   

19.
A thermosensitive sporulation mutant (ts-15) of Bacillus subtilis has been isolated. This mutant when grown at the restrictive temperature (42 degrees C) is unable to sporulate, shows no intracellular protease activity and no protein turnover. These three traits were recovered in two revertants (ts-15R1 and ts-15R2) and were also transmitted together by transformation into the wild type. Immunological studies have shown that when ts-15 is grown at 42 degrees C it synthesizes a 'cryptic' protein with apparently the same antigenic properties as the wild type or as ts-15 mutant grown at the permissive temperature (30 degrees C). The intracellular proteases from the wild type and from ts-15 grown at 30 degrees C and 42 degrees C were completely purified and their properties were studied with respect to their molecular weights, substrate specificity, inhibition pattern, heat inactivation and antigenicity. The molecular weight of the enzyme from the wild type or ts-15 grown at 30 degrees C was 64000--65000 in the absence of sodium dodecylsulfate and 31000--32000 in the presence of sodium dodecylsulfate. It was assumed therefore that the active enzyme is formed from two similar subunits. However, the intracellular protease from ts-15 grown at 42 degrees C showed the same molecular weight of 32000--34000 in the presence or in the absence of sodium dodecylsulfate. On the basis of this experiment and others described in the paper we concluded that the mutation in ts-15 is most likely a point mutation in a structural gene of an intracellular protease and results in an inability to assemble the two subunits into an active form.  相似文献   

20.
The content and distribution of autolysin were measured in temperature-sensitive morphological mutants of Bacillus subtilis. Strains RUB1000 and RUB1012 grew as rods at 30 C. At 45 C the mutants contained disproportionately less teichoic acid than peptidoglycan and grew as irregular spheres. The amount of enzyme that could be extracted from rods was at least 31 times the amount extracted from spheres. The rate of autolysis of cell walls was 7- to 28-fold greater in rods than in spheres. The low activity found associated with the cell walls of spheres was not compensated for by larger amounts of autolytic activity in the cytoplasm. No activity was found in the growth medium at either temperature. The failure of the mutant cells to autolyze was due to low amidase activity and relatively resistant cell walls. Revertants of RUB1012 were isolated that had 13, 23, and 55% of the normal proportions of teichoic acid when grown at the nonpermissive temperature. Cell walls from the revertants were as sensitive to added amidase as the wild-type strain. None of the revertant strains regained the wild-type ability to produce more amidase at 45 C. However, the deficiency in autolysin observed with RUB1012 was partially restored in revertants containing higher proportions of teichoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号