首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In different marine red algae (Chondrus crispus, Delesseria sanguinea, Membranoptera alata, Phycodrys rubens, Phyllophora truncata, Polyneura hilliae) photoinhibition of photosynthesis has been investigated by means of both fluorescence and oxygen measurements. Measurements of absolute oxygen production show that photoinhibition causes a decline in the initial slope and in the rate of bending of the fluence rate-response curve (i.e. the photosynthetic efficiency at non-saturating fluence rates), as well as a decline in the photosynthetic capacity (Pm) at saturating fluence rates. Fluorescence data (Fv/Fm) were consistent with the results of oxygen measurements. Under excessive light photoinhibition protects photosynthesis against photo-damage in red algae. However, an increase in the initial fluorescence (Fo) after photoinhibitory treatment indicates that it could not prevent photodamage entirely. Action spectra of photoinhibition demonstrate that the main photoinhibition site in Polyneura hiliae is PS II, because far red light absorbed by PS I was ineffective. The strong increase of Fo in the blue wavelength range and the slight and partial recovery in weak blue light indicate that blue light especially causes photodamage. Recovery of photosynthesis requires dim white light conditions. Experiments with monochromatic light also show a wavelength dependence of recovery. Moreover, the recovery of photosynthesis after a photoinhibitory treatment is strongly temperature dependent, indicating participation of enzymatic processes. The comparison of fluorescence and oxygen measurement of the recovery shows different results in some species. The rate of oxygen production in red control light increased immediately after photoinhibited algae were exposed to weak light conditions. Surprisingly, the ratio of variable to maximum fluorescence (Fv/Fm) of Phyllophora truncata and the maximum fluorescence (Fm) of Polyneura hilliae show first a delay of the recovery under weak light conditions. Thus, in recovery experiments fluorescence and oxygen data are not quite consistent.  相似文献   

2.
During an expedition in spring 1992 to Hainandao, an island in the tropical zone of the South China Sea, the daily courses of photoinhibition of different brown algal species and of the seagrass Thalassia hemprichii were investigated. Experiments were carried out with the new portable chlorophyll fluorometer PAM 2000 (Walz, Germany). As a measure of photoinhibition Fv/Fm was used and as a measure of the photosynthetic yield ΔF/Fm'. Photoinhibition occurred in all algae floating near the water surface and reached its maximum between noon and the early afternoon. In the evening photosynthesis was always fully recovered. The extent of photoinhibition depended on both the depth of the algae and the course of the irradiance during the day. Algae of the sublittoral zone showed only a low degree of photoinhibition at high fluence rates when they were covered by a water column of more than 1 m, even if the water was clear. The seagrass Thalassia hemprichii grew in the middle and upper intertidal zone and showed a significant photoinhibition at low tide only when it was not water-covered. Apparently, it is able to cope with extreme high light conditions without downregulation of photosynthesis caused by photoinhibition.  相似文献   

3.
Photosynthetic parameters were determined in disks from leaves of C. arabica cv. Red Catuaí and C. canephora cv. Kouillou grown in the field. Kouillou showed a relatively higher irradiance requirement for saturating photosynthesis, lower chlorophyll (Chl) content, and higher Chl a/b ratio than Catuaí. Photoinhibition of photosynthesis under bright irradiance was manifested by decreases in maximum photochemical efficiency (evaluated by the variable to maximum fluorescence ratio, Fv/Fm), as a consequence of an increased initial and a quenched maximum fluorescence. Restoration of Fv/Fm following photoinhibition in low irradiance was faster in Kouillou than in Catuaí. Chloramphenicol both accelerated photoinhibition (mainly in Kouillou) and blocked its recovery for at least 190 min in either cultivar. Photosynthetic oxygen evolution under photoinhibitory conditions was decreased by chloramphenicol; in control leaf disks this decrease was only observed in C. arabica, but with a rapid recovery within 90 min of low irradiance exposure. In both coffee cultivars, the depressed photochemical efficiency of photosystem 2 was not accompanied by a concomitant lowering in oxygen evolution during reversal from photoinhibition.  相似文献   

4.
Da Matta  F.M.  Maestri  M. 《Photosynthetica》1998,34(3):439-446
Photosynthetic parameters were determined in disks from leaves of C. arabica cv. Red Catuaí and C. canephora cv. Kouillou grown in the field. Kouillou showed a relatively higher irradiance requirement for saturating photosynthesis, lower chlorophyll (Chl) content, and higher Chl a/b ratio than Catuaí. Photoinhibition of photosynthesis under bright irradiance was manifested by decreases in maximum photochemical efficiency (evaluated by the variable to maximum fluorescence ratio, Fv/Fm), as a consequence of an increased initial and a quenched maximum fluorescence. Restoration of Fv/Fm following photoinhibition in low irradiance was faster in Kouillou than in Catuaí. Chloramphenicol both accelerated photoinhibition (mainly in Kouillou) and blocked its recovery for at least 190 min in either cultivar. Photosynthetic oxygen evolution under photoinhibitory conditions was decreased by chloramphenicol; in control leaf disks this decrease was only observed in C. arabica, but with a rapid recovery within 90 min of low irradiance exposure. In both coffee cultivars, the depressed photochemical efficiency of photosystem 2 was not accompanied by a concomitant lowering in oxygen evolution during reversal from photoinhibition.  相似文献   

5.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:9,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

6.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

7.
Effect of photoinhibition of sorghum leaves and isolated chloroplasts on chlorophyll fluorescence, peroxidation of thylakoid lipids and activity of antioxidant enzymes were studied. Photoinhibition of intact leaves and isolated chloroplasts decreased Fv/Fm ratio and qP, while qN increased. Photoinhibitory damage was more at 5 degrees C than at 30 degrees or 50 degrees C. Peroxidation of thylakoid lipids was 5 times greater when photoinhibited at 50 degrees C compared to control. Photoinhibition of chloroplasts under low oxygen condition or when supplemented with anti-oxidants (beta-carotene, ascorbate and GSH) resulted in significantly less damage to photosynthesis (Fv/Fm ratio) and peroxidation level. Photoinhibition also resulted in many fold increase in the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and decrease in catalase. Data presented here suggest that photoinhibition resulted in production of oxygen radicals and photoinhibition of chloroplasts in the presence of low oxygen level or when supplemented with antioxidants decreased the damage to Fv/Fm ratio and peroxidation level to a great extent since former prevented the formation of oxygen radicals and later could scavenge the oxygen radicals thus the protection. Increase activity of SOD and APX may also be to metabolise the oxygen radicals produced during photoinhibition treatment, thereby, protecting the seedlings against photooxidative damage.  相似文献   

8.
Cold acclimation and photoinhibition of photosynthesis in Scots pine   总被引:13,自引:0,他引:13  
Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem II reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20° C. The amounts and activities of the majority of analyzed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly Superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.Abbreviations APX ascorbate peroxidase - DHA dehydroascorbate - DHAR dehydroascorbate reductase - Fm maximal fluorescence when all reaction centres are closed - Fv/Fm maximum photochemical yield of PSII - GR glutathione reductase - GSH reduced glutathione - Je rate of photosynthetic electron transport - MDAR monodehydroascorbate reductase - qN nonphotochemical quenching of fluorescence - qP photochemical quenching of fluorescence - SOD superoxide dismutase This work was supported by the Swedish Natural Science Research Council and the National Natural Science Foundation of China.  相似文献   

9.
Diurnal heliotropic leaf movements, photosynthetic gas exchange, and the ratio of variable fluorescence to maximum fluorescence (Fv/Fm) of unrestrained and horizontally restrained leaves from soybean (Glycine max cv. Cumberland) plants grown in two different water and two different nitrogen treatments were measured. Leaves of plants grown in low water or low nitrogen availability treatments displayed more pronounced diaheliotropism (solar tracking) in the afternoon and a longer period of paraheliotropism (light avoiding) at midday relative to those of well-watered, high-nitrogen-grown plants. Photosaturated photosynthetic rates and the photon flux required to saturate photosynthesis were reduced by water stress and nitrogen deficiency. Compared to horizontal leaves, irradiance on orienting leaves was nearer to the breakpoint of the photosynthetic light response curve, where photosynthesis is co-limited by ribulose biphosphate regeneration and carboxylation. This would increase the carbon return on investments of nitrogen into photosynthesis. A positive linear relationship between Fv/Fm and quantum yield of photosynthesis was measured. Leaves of low-nitrogen-grown plants had earlier and more prolonged reductions in Fv/Fm at midday compared to leaves of high nitrogen grown plants of the same water treatment. Within the same water and nitrogen treatment, horizontally restrained leaves had lower midday Fv/Fm in relation to orienting leaves. Nitrogen deficiency and water stress enhanced this difference such that horizontally restrained leaves of low water and low nitrogen grown plants had earlier and longer midday depressions in Fv/Fm.  相似文献   

10.
With the use of chlorophyll fluorescence technique, it was found that the net photosynthetic oxygen evolution rate decreased after strong light (2 000 μmol· m-2·2-1 ) treatment for two hours in soybean ( Glycine max L. ) leaves. The chlorophyll fluorescence parameters, Fm/Fo, Fv/Fm, ФPSII, qp and qN decreased along with the increase of light intensity. In strong light, exogenous active oxygen H202、·OH and 'O2 were harmful to soybean leaves. The destruction of 'O2 and·OH to leaves was most evident, as was shown that Fv/Fm and PS H decreased significantly. The antioxidants DABCO, mannitol, ascorbate and histidine protected the leaves, but weakly, from strong light. In darkness, the SOD inhibitor sodium diethyldithiocar- bamate (DDC) had no significant effect on Fm/Fo and Fv/Fm, but NAN,, the ascorbate peroxidase (APX)inhibitor, significantly decreased Fm/Fo, Fv/Fm and ФPS II. In strong light, however, beth DDC and NaN3 reduced the above-mentioned fluorescence parameters, but NaN3 was more effective than DDC. The results suggested that photoinhibition did take place in soybean leaves under strong light, and it was related to active oxygen in vivo.  相似文献   

11.
200 mmol/L NaCl胁迫对杂交酸模(Rumex K-1)幼苗叶片光系统Ⅱ最大光化学效率(Fy/Fm)没有影响,但是显著降低了光合速率和气孔导度,导致细胞间隙CO2浓度和叶绿素含量增加.同时,盐胁迫引起活性氧清除关键酶超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性上升.在光合作用诱导过程中,无论是对照叶片还是盐胁迫叶片,米勒过氧化反应均维持一部分光合电子流.光合作用达到稳定状态后,盐胁迫叶片仍能够通过米勒过氧化反应维持部分光合电子流.强光下,低氧(2%)抑制米勒过氧化反应对对照叶片光抑制程度没有明显影响,而显著增加盐胁迫叶片的光抑制程度.据上述结果推测:盐胁迫下米勒过氧化反应的增强有助于消耗过剩的激发电子,从而降低强光下杂交酸模幼苗叶片的光抑制程度.  相似文献   

12.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSⅡ) (Fv/Fm, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in Fv/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm ) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover,trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHCⅡ) from PSⅡ reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

13.
不同氮素水平下二氧化碳加富对草莓叶片光抑制的影响   总被引:7,自引:1,他引:6  
用便携式调制叶绿素荧光仪和光合仪研究了强光下不同供氮水平(12、4和0.4 mmol·L-1)和不同CO2浓度下(700和390 μl·L-1)丰香草莓叶片的荧光参数及净光合速率的变化.结果表明,CO2和氮素对草莓叶片光抑制有明显的互作效应.在富CO2下,12 mmol·L-1供氮水平的草莓叶片净光合速率升高了62.7%,4和0.4 mmol·L-1供氮水平则分别降低了7.4%和21.3%;12 mmol·L-1供氮水平的Fm和Fv/Fm在强光胁迫时降辐减小,暗恢复时Fm和Fv/Fm恢复程度提高,而4和0.4 mmol·L-1供氮水平却相反.表明氮素供应不足时草莓叶片在富CO2环境下光合作用出现适应性下调,光抑制增强.  相似文献   

14.
Chlorophyll fluorescence measurements were used to evaluate the effect of temperature on photoinhibition inSpirulina platensis cultures grown in tubular reactors outdoors. Cultures grown at 35 °C during the day time showed a lower reduction in the Fv/Fm ratio as compared to cultures grown at 25 °C. It is demonstrated that the lower temperature photoinhibited cells can undergo a complete recovery once transferred to low light and higher temperature. This recovery does not take place when 100 µg ml-1 chloramphenicol is added to cells. The recovery is light dependent and cells incubated in the dark at low temperature do not show a recovery in the Fv/Fm ratio. The data presented strongly support the hypothesis that photoinhibition takes place in outdoorSpirulina cultures. At the same time it is demonstrated that fluorescence measurements can be used as a fast reliable indication for photoinhibition in outdoor algal cultures.Author for correspondencePublication No. 69 of the Microalgal Biotechnology Laboratory.  相似文献   

15.
水淹对水芹叶片结构和光系统II光抑制的影响   总被引:3,自引:0,他引:3  
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响, 阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明: 水淹条件下新生沉水功能叶光系统II(PSII)最大光化学效率(Fv/Fm) 、电子传递活性与对照叶片差异很小, 但水淹使气生功能叶的Fv/Fm显著降低; 植株总生物量呈负增长趋势; 活体弱光条件下, 沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化; 中等光强和强光条件下其RWC和Fv/Fm迅速降低; 离体条件下, 5小时的中等光强对沉水叶的Fv/Fm影响不显著, 在随后的弱光下能恢复到出水时的初始状态; 强光能使沉水叶的Fv/Fm大幅降低, 且弱光下不能恢复到出水时的初始水平; 在解剖结构上, 水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶, 而且沉水叶没有明显的栅栏组织分化, 但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明, 水淹使水芹原气生叶PSII功能迅速衰退, 但对新生沉水叶片影响很小。水芹植株出水后, 沉水叶片结构变化使其在光下保水能力下降, 而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏, 进而致使其死亡。  相似文献   

16.
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响,阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明:水淹条件下新生沉水功能叶光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)、电子传递活性与对照叶片差异很小,但水淹使气生功能叶的Fv/Fm显著降低;植株总生物量呈负增长趋势;活体弱光条件下,沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化;中等光强和强光条件下其RWC和Fv/Fm迅速降低;离体条件下,5小时的中等光强对沉水叶的Fv/Fm影响不显著,在随后的弱光下能恢复到出水时的初始状态;强光能使沉水叶的Fv/Fm大幅降低,且弱光下不能恢复到出水时的初始水平;在解剖结构上,水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶,而且沉水叶没有明显的栅栏组织分化,但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明,水淹使水芹原气生叶PSⅡ功能迅速衰退,但对新生沉水叶片影响很小。水芹植株出水后,沉水叶片结构变化使其在光下保水能力下降,而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏,进而致使其死亡。  相似文献   

17.
 通过测定西双版纳热带雨林冠层树种绒毛番龙眼(Pometia tomentosa)完全伸展嫩叶和成熟叶的叶片解剖、生理特征和雨季晴天自然条件下叶绿素a荧光以及午间强光对部分保护酶活性和膜脂过氧化作用的影响,探讨了两种不同发育阶段叶片光合作用的光抑制与强光和温度的关系。结果表明:绒毛番龙眼全展嫩叶和成熟叶表现出明显的解剖和生理特征差异。与全展嫩叶相比,成熟叶的叶片较厚、叶绿素含量高、气孔导度大、羧化效率高、最大净光合速率和光饱和点高,而气孔密度和保卫细胞长度没有显著差别。在雨季晴天自然条件下,午间最高光强可达2 200 μmol·m-2·s-1以上,最高叶温比气温高7~8 ℃,而成熟叶片的最高温度比全展嫩叶高1.5~2 ℃。上午随光强的增大,两种叶片的非光化学猝灭系数(NPQ)增大,PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率[(Fm′_Fs)/Fm′]逐渐减小,在15∶30左右达最小。下午随着光强的减弱,Fv/Fm逐渐恢复,在傍晚基本恢复到清晨值。初始荧光(F0)在一天中变化很小。这表明绒毛番龙眼叶片光抑制是非辐射能量耗散增加引起的保护光合机构免受光破坏的保护性反应,而非光破坏。全展嫩叶比成熟叶有较低的光化学效率和非辐射耗散能力,对强光和高温处理的敏感性也较强,但在自然条件下一天中的光抑制程度与成熟叶没有显著差别。田间午间强光导致两种叶片的保护酶活性(超氧化物歧化酶,SOD;抗坏血酸过氧化物酶,APX)升高,而H2O2含量变化较小。其中,全展嫩叶的保护酶活性高,丙二醛(MDA)含量低。这表明自然条件下,与成熟叶相比,绒毛番龙眼全展嫩叶通过较低的光能利用效率、较低的叶温和高的保护酶活性减轻了强光高温的光抑制程度。  相似文献   

18.
不同品种美国山核桃叶绿素荧光参数日变化的研究   总被引:5,自引:0,他引:5  
以湖南省永州市冷水滩采穗圃中的美国山核桃为试材,研究了叶绿素荧光参数的日变化规律。结果表明:初始荧光(Fo)、最大荧光(Fm)、PSII原初光能转化效率(Fv/Fm)、光合量子产额(Yield)、光化学猝灭系数(qP)、非光化学猝灭系数(qN)和表观电子传递速率(ETR)均存在着明显的日变化。其中Fv/Fm、Fm、Yield、qP均呈先下降后上升的趋势,在中午强光下降低到最低值;qN则呈先上升后下降的趋势,在中午时分达到峰值;Fo呈下降趋势,部分品种傍晚稍有回升,但仍比早晨低;ETR日变化呈双峰曲线。不同品种间Fv/Fm、Yield、ETR、qP、qN对光强和温度的响应也存在着明显差异,可作为鉴定品种耐光抑制能力大小的指标。  相似文献   

19.
Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat ( Triticum aestivum L.) under salt stress were studied. The results showed that several parameters associated with PSⅡ functions, e.g. Fv/Fo 、 Fv/Fm and qP were not influenced by lower salt concentration (200 mmol/L NaCl) while CO2 assimilation rate decreased significantly. When exposed to higher salt concentration (400 mmol/L NaCl), PSⅡ functions were significantly inhibited which led to the decrease of carbon assimilation. These results suggest that different concentrations of salt stress affected photosynthesis by different modes. Salt stress made photosynthesis more sensitive to strong light and led to more serious photoinhibition. Under lower concentration of salt stress, the QB-non-reductive PSⅡ reaction centers formed at the beginning of photoinhibition could be effectively used to compose active PSⅡ reaction center (RC) and repair the reversible inactivated PSⅡ RC. Under higher concentration of salt stress, PSⅡ reaction centers were seriously damaged during photoinhibition, the QB-non-reductive PSⅡ RC could only be partly effective at the early time of photoinhibition, thus led to the accumulation of QB-non-reductive PSⅡ RC in the course of restoration under dim light.  相似文献   

20.
Häder  Donat-P.  Porst  Markus  Santas  Regas 《Plant Ecology》1998,139(2):167-175
Photoinhibition of photosynthesis, defined as reversible decrease in the effective photosynthetic quantum yield, was measured in the Mediterranean red alga, Peyssonnelia squamata, using pulse amplitude modulation (PAM) chlorophyll fluorescence and oxygen production on site. This alga is adapted to very low fluence rates of solar radiation and is easily inhibited by exposure to excessive radiation. At high solar angles its photosynthetic capacity is impaired even in its natural habitat, in the protective shade of overhanging rocks. Oxygen production was maximal at 5 m depth and decreased to almost zero at the surface. When exposed at the surface oxygen production ceased within 16 min. The optimal photosynthetic quantum yield, defined as Fv/Fm, was about 0.45 in dark-adapted specimens. After 30 min of exposure to unattenuated solar radiation the (effective, Fv/Fm) quantum yield decreased to below 0.1. Removing solar UV (especially UV-B) significantly reduced photoinhibition: the quantum yield of a sample exposed under a UV-B cut-off filter was double that of a sample exposed to full solar radiation after 30 min exposure. Recovery from photoinhibition took several hours and was not complete after prolonged exposure (1.5 h) to direct solar radiation. The degree of photoinhibition depended on the depth at which the thalli were exposed. Recovery from photoinhibition was complete within 2 h except when the algae were exposed at the surface. When measured over the whole day, the effective photosynthetic quantum yield significantly decreased by about 25% from initially high values toward early afternoon and rose again towards evening. The data indicate that this alga is adapted to very low irradiances and is easily inhibited by excessive solar radiation; solar UV contributes substantially to the observed photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号