首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Choi S  Lee JH  Oh S  Rhim H  Lee SM  Nah SY 《Molecules and cells》2003,15(1):108-113
Treatment with ginsenosides, major active ingredients of Panax ginseng, produces a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. Recent reports showed that ginsenoside Rg2 inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. In the present study, we investigated the effect of ginsenoside Rg2 on human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity, which is also one of the ligand-gated ion channel families. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. The ginsenoside Rg2 itself had no effect on the oocytes that were injected with H2O as well as on the oocytes that were injected with the 5-HT3A receptor cRNA. In the oocytes that were injected with the 5-HT3A receptor cRNA, the pretreatment of ginsenoside Rg2 inhibited the 5-HT-induced inward peak current (I5-HT) The inhibitory effect of ginsenoside Rg2 on I5-HT was dose dependent and reversible. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 was 22.3 +/- 4.6 microM. The inhibition of I5-HT by ginsenoside Rg2 was non-competitive and voltage-independent. These results indicate that ginsenoside Rg2 might regulate the 5-HT3A receptors that are expressed in Xenopus oocytes. Further, this regulation on the ligand-gated ion channel activity by ginsenosides might be one of the pharmacological actions of Panax ginseng.  相似文献   

2.
Ginsenosides, major active ingredients of Panax ginseng, are known to regulate the excitatory ligand-gated ion channel activity. Recent reports showed that ginsenosides attenuate nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides also affect the inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human glycine alpha1 receptor channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. Treatment of ginsenoside Rf enhances glycine-induced inward peak current (IGly) with dose dependent and reversible manner but ginsenoside Rf itself did not elicit membrane currents. The half-stimulatory concentrations (EC50) of ginsenoside Rf was 49.8 +/- 8.9 microM. Glycine receptor antagonist strychnine completely blocked the inward current elicited by glycine plus ginsenoside Rf. Cl- channel blocker 4,4'-disothiocyanostilbene-2,2'-disulfonic acid (DIDS) also blocked the inward current elicited by glycine plus ginsenoside Rf. We also tested the effect of eight individual ginsenosides (i.e., Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2, and Ro) in addition to ginsenoside Rf. We found that five of them significantly enhanced the inward current induced by glycine with the following order of potency: Rb1 > Rb2 > Rg2 > or = Rc > Rf > Rg1 > Re. These results indicate that ginsenosides might regulate gylcine receptor expressed in Xenopus oocytes and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

3.
Prokaryotic members of the Cys-loop receptor ligand-gated ion channel superfamily were recently identified. Previously, Cys-loop receptors were only known from multicellular organisms (metazoans). Contrary to the metazoan Cys-loop receptors, the prokaryotic ones consist of an extracellular (ECD) and a transmembrane domain (TMD), lacking the large intracellular domain (ICD) present in metazoa (between transmembrane segments M3 and M4). Using a chimera approach, we added the 115-amino acid ICD from mammalian serotonin type 3A receptors (5-HT(3A)) to the prokaryotic proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC). We created 12 GLIC-5-HT(3A)-ICD chimeras by replacing a variable number of amino acids in the short GLIC M3M4 linker with the entire 5-HT(3A)-ICD. Two-electrode voltage clamp recordings after expression in Xenopus laevis oocytes showed that only two chimeras were functional and produced currents upon acidification. The pH(50) was comparable with wild-type GLIC. 5-HT(3A) receptor expression can be inhibited by the chaperone protein RIC-3. We have shown previously that the 5-HT(3A)-ICD is required for the attenuation of 5-HT-induced currents when RIC-3 is co-expressed with 5-HT(3A) receptors in X. laevis oocytes. Expression of both functional 5-HT(3A) chimeras was inhibited by RIC-3 co-expression, indicating appropriate folding of the 5-HT(3A)-ICD in the chimeras. Our results indicate that the ICD can be considered a separate domain that can be removed from or added to the ECD and TMD while maintaining the overall structure and function of the ECD and TMD.  相似文献   

4.
Human B lymphocytes were examined to determine whether transmembrane ion conductance plays a role in cell activation. Mitogens (anti-human IgM F(ab')2 fragment (anti-mu) and PMA) were used to stimulate B lymphocytes. Mitogen-induced DNA synthesis was inhibited by tetraethylammonium-Cl (TEA), 4-aminopyridine (4AP), verapamil, and diltiazem in a dose-dependent manner. This inhibition was not due to reduction in cell viability as determined by trypan blue exclusion. Mitogen-induced increases in RNA synthesis were partially inhibited by TEA and 4AP and were more completely inhibited by verapamil and diltiazem. Mitogen-induced cell volume increases were not affected by TEA or 4AP but were completely inhibited by verapamil and diltiazem. B lymphocytes stimulated with anti-mu expressed G1 phase cell surface antigens in the presence of TEA or 4AP, but failed to do so in the presence of verapamil or diltiazem. Substitution of PMA for anti-mu as the mitogen did not alter the effects of TEA or 4AP. However, verapamil inhibited PMA-induced expression of G1 phase cell surface markers although diltiazem did not. The patch clamp technique was used to directly examine plasma membrane ionic currents in whole-cell, cell-attached, and inside-out patch configurations. Activation of B lymphocytes with either anti-mu or the Ca2+ ionophore, A23187, inhibited opening of one type of channel in cell-attached patches. In inside-out patches, this channel type conducted current when the bath [Ca2+] was low (6 X 10(-8) M) but failed to conduct current when the bath [Ca2+] was increased above 1 X 10(-6) M. The results of these experiments are consistent with the hypothesis that activation of B lymphocytes induces alterations in plasma membrane ion conductance. Single channel studies suggest that activation induced increases in [Ca2+]i may directly inhibit a specific set of plasma membrane ion channels as one mechanism by which transmembrane ion flux is altered.  相似文献   

5.
6.
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.  相似文献   

7.
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.  相似文献   

8.
In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent Ca(2+) channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned Ca(2+) channel subtypes such as alpha(1C) (L)-, alpha(1B) (N)-, alpha(1A) (P/Q)-, a1E (R)- and a1G (T) have not been identified. Here, we used the two-microelectrode volt-age clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on Ba(2+) currents (IBa) in Xenopus oocytes expressing five different Ca(2+) channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the a1G-type. Of the various ginsenosides, Rb(1), Rc, Re, Rf, Rg(1), Rg(3), and Rh(2), ginsenoside Rg(3) also inhibited all five channel subtypes and ginsenoside Rh(2) had most effect on the a1C- and a1E-type Ca(2+) channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the a(1G)-type of Ca(2+) channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. Rg(3), Rh(2), and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the alpha(1B)- and alpha(1A)-types. These results reveal that Rg(3), Rh(2) and CK are the major inhibitors of Ca(2+) channels in Panax ginseng, and that they show some Ca(2+) channel selectivity.  相似文献   

9.
The biophysical properties and cellular distribution of ion channels largely determine the input/output relationships of electrically excitable cells. A variety of patch pipette voltage clamp techniques are available to characterize ionic currents. However, when used by themselves, such techniques are not well suited to the task of mapping low-density channel distributions. We describe here a new voltage clamp method (the whole cell loose patch (WCLP) method) that combines whole-cell recording through a tight-seal pipette with focal extracellular stimulation through a loose-seal pipette. By moving the stimulation pipette across the cell surface and using a stationary whole-cell pipette to record the evoked patch currents, this method should be suitable for mapping channel distributions, even on large cells possessing low channel densities. When we applied this method to the study of currents in cultured chick myotubes, we found that the cell cable properties and the series resistance of the recording pipette caused significant filtering of the membrane currents, and that the filter characteristics depended in part upon the distance between the stimulating and recording pipettes. We describe here how we determined the filter impulse response for each loose-seal pipette placement and subsequently recovered accurate estimates of patch membrane current through deconvolution.  相似文献   

10.
The M(2) integral membrane protein of influenza A virus forms a proton-selective ion channel. We investigated the mechanism for proton transport of the M(2) protein in Xenopus oocytes using a two-electrode voltage clamp and in CV-1 cells using the whole cell patch clamp technique. Membrane currents were recorded while manipulating the external solution to alter either the total or free proton concentration or the solvent itself. Membrane conductance decreased by approximately 50% when D(2)O replaced H(2)O as the solvent. From this, we conclude that hydrogen ions do not pass through M(2) as hydronium ions, but instead must interact with titratable groups that line the pore of the channel. M(2) currents measured in solutions of low buffer concentration (<15 mM in oocytes and <0.15 mM in CV-1 cells) were smaller than those studied in solutions of high buffer concentration. Furthermore, the reversal voltage measured in low buffer was shifted to a more negative voltage than in high buffer. Also, at a given pH, M(2) current amplitude in 15 mM buffer decreased when pH-pK(a) was increased by changing the buffer pK(a). Collectively, these results demonstrate that M(2) currents can be limited by external buffer capacity. The data presented in this study were also used to estimate the maximum single channel current of the M(2) ion channel, which was calculated to be on the order of 1-10 fA.  相似文献   

11.
We studied the effects of guanosine 3',5'-cyclic monophosphate (cGMP) and nitroprusside on ion channels in the apical membrane of confluent A6 cells (a distal nephron cell line) cultured on permeable supports for 10-14 days using patch clamp techniques. In cell-attached patches without any detectable channel activity, activity of a non-selective cation channel with a single-channel conductance of 1 pS was observed after adding nitroprusside. After adding cGMP to the cytosolic surface of inside-out patches with no detectable channel activity, we observed single channel activity similar to the channel observed after adding nitroprusside. These observations imply that nitroprusside activates a non-selective cation channel with small single channel conductance (1 pS) via an increase in cGMP which activates the channel.  相似文献   

12.
To investigate modulation of the activation of cGMP-gated ion channels in cone photoreceptors, we measured currents in membrane patches detached from the outer segments of single cones isolated from striped bass retina. The sensitivity of these channels to activation by cGMP depends on the history of exposure to divalent cations of the membrane''s cytoplasmic surface. In patches maintained in 20 μM Ca++ and 100 μM Mg++ after excision, the current amplitude dependence on cGMP is well described by a Hill equation with average values of K 1/2, the concentration necessary to activate half the maximal current, of 86 μM and a cooperativity index, n, of 2.57. Exposing the patch to a solution free of divalent cations irreversibly increases the cGMP sensitivity; the average value of K 1/2 shifts to 58.8 μM and n shifts to 1.8. Changes in cGMP sensitivity do not affect other functional parameters of the ion channels, such as the interaction and permeation of mono- and divalent cations. Modulation of cGMP activation depends on the action of an endogenous factor that progressively dissociates from the channel as Ca++ concentration is lowered below 1 μM. The activity of the endogenous modulator is not well mimicked by exogenously added calmodulin, although this protein competes with the endogenous modulator for a common binding site. Thus, the modulation of cGMP affinity in cones depends on the activity of an unidentified molecule that may not be calmodulin.  相似文献   

13.
The M-current (IK(M)) is a slow voltage-gated K+ current which can be inhibited by muscarinic acetylcholine-receptor (mAChR) agonists. In the present experiments we have tested whether this inhibition results from a local (membrane-delimited) interaction between the receptor and adjacent channels, or whether channel closure is mediated by a diffusible messenger. To do this, single KM(+)-channel currents were recorded from membrane patches in dissociated rat superior cervical sympathetic neurons by using cell-attached patch electrodes. Channel activity was inhibited when muscarine was applied to the cell membrane outside the patch but persisted when channels were exposed to muscarine added to the pipette solution. We conclude that a diffusible molecule (or molecules) is (are) required to induce intrapatch channel closure following activation of extra-patch receptors.  相似文献   

14.
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.  相似文献   

15.
The study of ion channel-mediated changes in membrane potential using the conventional bisoxonol fluorescent dye DiBAC(4)(3) has several limitations, including a slow onset of response and multistep preparation, that limit both the fidelity of the results and the throughput of membrane potential assays. Here, we report the characterization of the FLIPR Membrane Potential Assay Kit (FMP) in cells expressing voltage- and ligand-gated ion channels. The steady-state and kinetics fluorescence properties of FMP were compared with those of DiBAC(4)(3), using both FLIPR and whole-cell patch-clamp recording. Our experiments with the voltage-gated K(+) channel, hElk-1, revealed that FMP was 14-fold faster than DiBAC(4)(3) in response to depolarization. On addition of 60 mM KCl, the kinetics of fluorescence changes of FMP using FLIPR were identical to those observed in the electrophysiological studies using whole-cell current clamp. In addition, KCl concentration-dependent increases in FMP fluorescence correlated with the changes of membrane potential recorded in whole-cell patch clamp. In studies examining vanilloid receptor-1, a ligand-gated nonselective cation channel, FMP was superior to DiBAC(4)(3) with respect to both kinetics and amplitude of capsaicin-induced fluorescence changes. FMP has also been used to measure the activation of K(ATP) and hERG. Thus this novel membrane potential dye represents a powerful tool for developing high-throughput screening assays for ion channels.  相似文献   

16.
茉莉酸甲酯抑制拟南芥根伸长生长电生理学机制   总被引:1,自引:0,他引:1  
以外源茉莉酸甲酯(JA-Me)处理拟南芥,运用膜片钳技术研究JA-Me、过氧化氢(H2O2)和内向K+通道之间的关系,以探讨茉莉酸类物质(JAs)抑制根伸长生长分子机制。检测到10-4mol/L的JA-Me能抑制根细胞质膜内向K+电流,表明可能与根的伸长生长有关,并且发现H2O2可能作为第二信使参与了JAs抑制根伸长生长的过程,H2O2介导的JA-Me对根细胞内向K+通道的抑制是根生长受抑的可能电生理机制。  相似文献   

17.
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.  相似文献   

18.
Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K (K-ATP) channel currents were recorded in acutely dissociated rat neo-cortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intra-cellular ATP, but also by membrane potential ( Vm) , and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and di-versity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activa-tion-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary con-ductance of about 80 pS in detail ( n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane poten  相似文献   

19.
The actions of the n-alkanols butanol, pentanol, and octanol on unitary currents passing through N-methyl-D-aspartate (NMDA) ion channels have been studied in cultured CA1 hippocampal neurons. The cell-attached patch clamp method, with L-homocysteic acid included in the patch pipette, was used to record single channel NMDA currents at the cell resting potential or for hyperpolarizing patch potentials. With the n-alkanols added to the bath solution, the mean open times for the NMDA channel were diminished and the channel conductance was unchanged. A decrease in mean open time to about 70% of control value was found with butanol (3 mM), pentanol (1 mM), and octanol (0.02 mM). In addition the n-alkanols had small effects to decrease the frequency of channel openings and to increase the amplitude of the unitary currents. The effects of the alcohols on intracellular calcium levels, during NMDA applications, were also measured using the fluorescent dye FURA II.  相似文献   

20.
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is approximately 7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide-gated channels in rod photoreceptors are heteromeric assemblies of alpha and beta subunits. The maximal PCa/PNa of channels formed from alpha subunits of bovine rod channels is less than that of heteromeric channels formed from alpha and beta subunits. In addition, Ca2+ is a more effective blocker of channels formed by alpha subunits than of channels formed by alpha and beta subunits. The cGMP-dependent shift in divalent cation selectivity is a property of alphabeta channels and not of channels formed from alpha subunits alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号