首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal elicitor-mediated responses in pine cell cultures   总被引:4,自引:0,他引:4  
A tissue culture system has been developed to examine phenylpropanoid metabolism induced in pine tissues by an ectomycorrhizal symbiont. An elicitor preparation from the ectomycorrhizal fungus Thelephora terrestris Fr. induced enhanced phenolic metabolism in suspension cultured cells of Pinus banksiana Lamb., as indicated by tissue lignification and accumulation of specific methanol-extractable compounds in the cells. Induction of lignification was observed as early as 12 h after elicitation. The activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the entry-point enzyme into phenylpropanoid metabolism, also increased within the same time-frame in elicited cells. Significant increases in PAL activity were evident by 6 h after elicitation, and, by 12 h after elicitation, PAL activity in elicited cells was ten times greater than that in the corresponding controls. Lignification of the elicited tissue was also accompanied by an increase in the activity of other enzymes associated with lignin synthesis, including caffeic acid O-methyl transferase (EC 2.1.1.46), hydroxycinnamate:CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-), coniferin glucosidase (EC 3.2.1.21) and peroxidase (EC 1.11.1.7). The increase in total peroxidase activity was associated with a change in the pattern of soluble peroxidase isoforms. The pine cell culture-ectomycorrhizal elicitor system provides a good model for molecular analysis of the process of lignification in an economically important softwood species.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 4CL hydroxycinnamate:Coenzyme A ligase (EC 6.2.1.12) - CAD cinnamyl alcohol dehydrogenase (EC 1.1.1.-) - COMT S-adenosyl-l-methionine:caffeate O-methyl transferase (EC 2.1.1.46) - HPLC high-pressure liquid chromatography - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - TGA thioglycolic acid To whom correspondence should be addressedFinancial assistance for this work was provided by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

2.
A biosynthetic pathway for rosmarinic acid is proposed. This pathway is deduced from studies of the enzymes detectable in preparations from suspension cells of Coleus blumei. Phenylalanine is transformed to 4-coumaroyl-CoA by the enzymes of the general phenylpropanoid pathway: phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamic acid 4-hydroxylase (EC 1.14.13.11) and hydroxycinnamic acid:CoA ligase (EC 6.2.1.12). Tyrosine is metabolized to 4-hydroxyphenyllactate by tyrosine aminotransferase (EC 2.6.1.5) and hydroxyphenylpyruvate reductase. The ester can be formed from 4-coumaroyl-CoA and 4-hydroxyphenyllactate by the catalytic activity of rosmarinic acid synthase with concomitant release of CoA. Microsomal hydroxylase activities introduce the hydroxyl groups at positions 3 and 3 of the aromatic rings of the ester 4-coumaroyl-4-hydroxyphenyllactate giving rise to rosmarinic acid.Abbreviations Caf-pHPL caffeoyl-4-hydroxyphenyllactate - DHPL 3,4-dihydroxyphenyllactic acid - pC-DHPL 4-coumaryl-3,4-dihydroxyphenyllactate - pC-pHPL 4-coumaryl-4-hydroxyphenyllactate - pHPL 4-hydroxyphenyllactic acid - RA rosmarinic acid The financial support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.  相似文献   

3.
Five phenolic compounds, p-hydroxyacetophenone, 5,7-dihydroxychromone, naringenin, quercetin, and iso-americanol A, were found first time in the barley tea, together with the known compounds, p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, p-hydroxybenzoic acid, vanillic acid, and p-coumaric acid. The anti-oxidative properties were evaluated by measuring their peroxynitrite-scavenging activities. Among these compounds, 3,4-dihydroxybenzaldehyde, p-coumaric acid, quercetin, and isoamericanol A showed stronger activities than that of BHT (butylated hydroxytoluene) at 400 μM.  相似文献   

4.
W. Knogge  G. Weissenböck 《Planta》1986,167(2):196-205
Primary leaves of oats (Avena sativa L.) have been used to study the integration of secondary phenolic metabolism into organ differentiation and development. In particular, the tissue-specific distribution of products and enzymes involved in their biosynthesis has been investigated. C-Glucosylflavones along with minor amounts of hydroxycinnamic-acid esters constitute the soluble phenolic compounds in these leaves. In addition, considerable amounts of insoluble products such as lignin and wall-bound ferulic-acid esters are formed. The tissue-specific activities of seven enzymes were determined in different stages of leaf growth. The rate-limiting enzyme of flavonoid biosynthesis in this system, chalcone synthase, together with chalcone isomerase (EC 5.5.1.6) and the terminal enzymes of the vitexin and isovitexin branches of the pathway (a flavonoid O-methyltransferase and an isovitexin arabinosyltransferase) are located in the leaf mesophyll. Since the flavonoids accumulate predominantly (up to 70%) in both epidermal layers, an intercellular transport of products is postulated. In contrast to the flavonoid enzymes, L-phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate: CoA ligase (EC 6.2.1.12), and S-adenosyl-L-methionine: caffeate 3-O-methyltransferase (EC 2.1.1.-), all involved in general phenylpropanoid metabolism, showed highest activities in the basal leaf region as well as in the epidermis and the vascular bundles. We suggest that these latter enzymes participate mainly in the biosynthesis of non-flavonoid phenolic products, such as lignin in the xylem tissue and wall-bound hydroxycinnamic acid-esters in epidermal, phloem, and sclerenchyma tissues.Abbreviations CHI chalcone isomerase - CHS chalcone synthase - 4CL 4-coumarate: CoA ligase - CMT S-adenosyl-L-methionine:caffeate 3-O-methyltransferase - FMT S-adenosyl-L-methionine:vitexin 2-O-rhamnoside 7-O-methyltransferase - HPLC high-performance liquid chromatography - IAT uridine 5-diphosphate L-arabinose:isovitexin 2-O-arabinosyltransferase - PAL L-phenylalanine ammonia-lyase  相似文献   

5.
We present the results of an in vitro investigation of the inhibitory effects of phenylpropanoid metabolites on copper-induced protein oxidative modification of mice brain homogenate. The effects of caffeic acid, 3-(3, 4-dihydroxyphenyl)-l-alanine, esculetin, ferulic acid, and scopoletin were stronger than that of mannitol as a free-radical scavenger, whereas the effects of other phenylpropanoid metabolites, cinnamic acid, coniferyl alcohol, p-coumaric acid, coumarin, phenylalanine, tyrosine, and umbelliferone, were weak. These results demonstrated that phenolic carboxylic acids with 3,4-dihydroxy or 4-hydroxy-3-methoxy substituents and benzo-α-pyrons with 6,7-dihydroxy or 7-hydroxy-6-methoxy substituents in phenylpropanoid metabolites inhibit metal-induced protein oxidative modification of the brain.  相似文献   

6.
Suspension cultures of Coleus blumei accumulate very high amounts of rosmarinic acid, an ester of caffeic acid and 3,4-dihydroxyphenyllactate, in medium with elevated sucrose concentrations. Since the synthesis of this high level of rosmarinic acid occurs in only five days of the culture period, the activities of the enzymes involved in the biosynthesis are very high. Therefore all the enzymes necessary for the formation of rosmarinic acid from the precursors phenylalanine and tyrosine could be isolated from cell cultures of Coleus blumei: phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, hydroxycinnamoyl:CoA ligase, tyrosine aminotransferase, hydroxyphenylpyruvate reductase, rosmarinic acid synthase and two microsomal 3- and 3-hydroxylases. The main characteristics of these enzymes of the proposed biosynthetic pathway of rosmarinic acid will be described.Abbreviations DHPL 3,4-dihydroxyphenyllactate - DHPP 3,4-dihydroxyphenylpyruvate - pHPL 4-hydroxyphenyllactate - pHPP 4-hydroxyphenylpyruvate - RA rosmarinic acid  相似文献   

7.
Summary Two new mutants of E. coli K12, strains PT9 and PT32 were isolated, that were defective in proline transport. They had no high affinity proline transport activity, but their cytoplasmic membranes retained proline binding activity with altered sensitivity to inhibition by p-chloromercuribenzoate(pCMB). The lesion was mapped at the putP gene, which is located at min 23 on the revised E. coli genetic map (Bachmann 1983) as a composite gene in the proline utilization gene cluster, putP, putC, and putA, arranged in this order. The putC gene was shown to regulate the synthesis of proline dehydrogenase (putA gene product).Hybrid plasmids carrying the put region (Motojima et al. 1979; Wood et al. 1979) were used to construct the physical map of the put region. The possible location of the putP gene in the DNA segment was determined by subcloning the putP gene, genetic complementation, and recombination analyses using several proline transport mutants.Abbreviations pCMB p-chloromercuribenzoate - DM Davis and Mingioli - Ap ampicillin - NTG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate - Str streptomycin - Tet tetracycline - Ac l-azetidine-2-carboxylic acid - DHP 3, 4-dehydro-d,l-proline - MTT 3-(4,5-dimethyl-2)2,5-diphenyl tetrazolium bromide - Tris tris(hydroxymethyl)aminomethane - EDTA ethylenediamine tetraacetic acid - Kan kanamycin - Spc spectinomycin  相似文献   

8.
W. Jahnen  K. Hahlbrock 《Planta》1988,173(2):197-204
The response of parsley seedlings (Petroselinum crispum) inoculated with zoospores of the soybean-pathogenic fungus, Phytophthora megasperma f. sp. glycinea, ranged from immunity to physiological susceptibility depending on the post-inoculation environmental conditions. Typical nonhost resistance reactions, hypersensitive cell death and the formation of small local lesions, occurred under high relative humidity and 16 h illumination per day. Localized biochemical reactions were monitored using fluorescence microscopy combined with histochemical and immunohistochemical methods. The rapid accumulation of furanocoumarin phytoalexins, wall-bound phenolics and callose was detected around infection sites. Indirect antibody staining of frozen tissue sections demonstrated the local accumulation of phenylalanine ammonia-lyase, a key enzyme of general phenylpropanoid metabolism, and S-adenosyl-L-methionine: bergaptol O-methyltransferase, a specific enzyme of the furanocoumarin pathway. The results indicate that phenylpropanoid derivatives are synthesized de novo at infection sites.Abbreviations BMT S-adenosyl-L-methionine:bergaptol O-methyltransferase - PAL phenylalanine ammonia-lyase - PBS phosphate-buffered saline  相似文献   

9.
Muramic acid has been detected in Prochloron with the aid of two different techniques. It was assayed by cleaving D-lactate from muramic acid and then reducing NAD with D-lactate dehydrogenase and measuring the NADH with bacterial luciferase. Gas-liquid chromatography of trimethylsilyl derivatives of cell extracts confirmed that muramic acid was present in about the quantity given by the D-lactate assay. The amount of muramic acid present was 1.7±0.2 g/mg dry weight or 1.3fg/m2 of cell surface. This suggests that the thickness of the peptidoglycan layer in Prochloron is similar to that in blue-green algae.Abbreviations D-LDH d-lactate dehydrogenase - MA muramic acid - TMS trimethylsilyl - TLE thin layer electrophoresis - GLC gas-liquid chromatography  相似文献   

10.
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.  相似文献   

11.
The four amino acids of the aspartate family (l-lysine, l-methionine, l-threonine, and l-isoleucine) are produced in bacteria by a branched biosynthetic pathway. Regulation of synthesis of early common intermediates and of carbon flow through distal branches of the pathway requires operation of a number of subtle feedback controls, which are integrated so as to ensure balanced synthesis of the several end products. Earlier studies with nonsulfur purple photosynthetic bacteria were instrumental in revealing the existence of alternative regulatory schemes, and in this communication we report on the control pattern of a representative of this physiological group not previously investigated, Rhodopseudomonas palustris. The results obtained from study of the properties of four key regulatory enzymes of the aspartate family pathway (-aspartokinase, homoserine dehydrogenase, homoserine kinase, and threonine deaminase) and of the effects of exogenous amino acids (i. e., the end products) on growth of the bacterium indicate that the control schema in Rps. palustris differs substantially from the schemes described for other Rhodopseudomonas species, but resembles the regulatory pattern observed in Rhodospirillum rubrum.Abbreviations A absorbancy - AK -aspartokinase - ASA aspartate -semialdehyde - DTT dithiothreitol - HS l-homoserine - HSDH homoserine dehydrogenase - HSK homoserine kinase - I l-isoleucine - KU Klett-Summerson photometer units - L l-lysine - M l-isoleucine - KU Klett-Summerson photometer units - L l-lysine - M l-methionine - ME -mercaptoethanol - PABA p-aminobenzoic acid - T l-threonine - TD threonine deaminase - RCV synthetic growth medium (see text) - YP agar medium containing 0.3% yeast extract, 0.3% peptone, and 1.5% agar - Y2T synthetic growth medium (see text)  相似文献   

12.
Kurt Mendgen  Petra Nass 《Planta》1988,174(2):283-288
The biotrophic parasite Erysiphe graminis f. sp. hordei produces haustoria within the cells of its host Hordeum vulgare. To determine the physiological activity of these haustoria, the electric potential across the membranes in the mitochondria of the haustorium was studied. The membrane potential was estimated with the fluorescent potentiometric cyanine dye 3,3-dibutyloxacarbocyanine iodide. The addition of depolarizing agents (carbonylcyanide m-chlorophenylhydrazone, 2,4-dinitrophenol or KCN) to infected cells resulted in an increase of fluorescence after the addition of low concentrations or a decrease of fluorescence after the addition of higher concentrations. When the infected host cell was fed with increasing concentrations of d-glucose (25, 50, 75 mM), corresponding decreases of fluorescence were measured immediately in the mitochondria of the fungal haustoria. Sucrose induced a similar reduction of fluorescence about 20 min late. d-Galactose and d-fructose induced a somewhat smaller reduction of fluorescence, l-glucose and d-glucitol had no effect. The results indicate that haustoria take up glucose from the host cells immediately. Sucrose, d-galactose and d-fructose seem to require time to be metabolized before their products reach the fungal haustorium or mitochondria.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DiOC4(3) 3,3-dibutyloxacarbocyanine iodide - DNP 2,4-dinitrophenol  相似文献   

13.
Some flavonoids are considered as beneficial compounds because they exhibit anticancer or antioxidant activity. In higher plants, flavonoids are secondary metabolites that are derived from phenylpropanoid biosynthetic pathway. A large number of phenylpropanoids are generated from p-coumaric acid, which is a derivative of the primary metabolite, phenylalanine. The first two steps in the phenylpropanoid biosynthetic pathway are catalyzed by phenylalanine ammonia-lyase and cinnamate 4-hydroxylase, and the coupling of these two enzymes forms a rate-limiting step in the pathway. For the generation of p-coumaric acid, the conversion from phenylalanine to p-coumaric acid that is catalyzed by two enzymes can be theoretically performed by a single enzyme, tyrosine ammonia-lyase (TAL) that catalyzes the conversion of tyrosine to p-coumaric acid in certain bacteria. To modify the p-coumaric acid pathway in plants, we isolated a gene encoding TAL from a photosynthetic bacterium, Rhodobacter sphaeroides, and introduced the gene (RsTAL) in Arabidopsis thaliana. Analysis of metabolites revealed that the ectopic over-expression of RsTAL leads to higher accumulation of anthocyanins in transgenic 5-day-old seedlings. On the other hand, 21-day-old seedlings of plants expressing RsTAL showed accumulation of higher amount of quercetin glycosides, sinapoyl and p-coumaroyl derivatives than control. These results indicate that ectopic expression of the RsTAL gene in Arabidopsis enhanced the metabolic flux into the phenylpropanoid pathway and resulted in increased accumulation of flavonoids and phenylpropanoids.  相似文献   

14.
The trisaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group B determinant, was synthesized. Thioglycosides activated by sulfuryl chloride/trifluoromethanesulfonic acid were used as glycosyl donors in the construction of the three glycosidic linkages.  相似文献   

15.
Sporopollenin obtained from wings of Pinus mugo (Turra) pollen was analysed by pyrolysis mass spectrometry. In the spectrum, mass peaks which are characteristic for p-coumaric acid were dominant. p-Coumaric acid was the main degradation compound when the wing material was treated by a gentle method using AII3, and also when the remaining residue of the treated sporopollenin material was saponified. It is therefore assumed that p-coumaric acid is a genuine structural unit in the sporopollenin skeleton. In addition, the effects of AII3 treatment indicate that the p-coumaric acid might be bound by ether linkages.Abbreviations HPLC high-performance liquid chromatography - MS mass spectrometry - TLC thin-layer chromatography  相似文献   

16.
The trisaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 1 and the tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-3-O-(-l-fucopyranosyl)-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 2 were synthesized. Thioglycosides, suitably protected, activated directly with methyl trifluoromethanesulfonate or dimethyl(methylthio)sulfonium tetrafluoroborate or activated after bromine treatment with halophilic reagents, were used as glycosyl donors in the construction of the glycosidic linkages.Abbreviations DMTSB dimethyl(methylthio)sulfonium tetrafluoroborate - Phth phthaloyl - MBn p-methoxybenzyl - ClBn p-chlorobenzyl  相似文献   

17.
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

18.
Free D- and L-alanine contents were comparable in the body wall and introvert cum retractor muscles of Phascolosoma arcuatum. In contrast, the content of free D-alanine in the internal organs was twice that of free L-alanine. Since alanine aminotrans-ferase from P. arcuatum was L-alanine specific, D-alanine appeared to be synthesized from L-alanine through the action of alanine racemase. Alanine racemase activity was higher in the D-alanine-forming direction in the three body parts of P. arcuatum. In addition, the ratio of DL/LD racemase activity in the internal organs was the lowest among the body parts studied. These results indicate that free D-alanine might be of lesser importance than the free D-isomer to the internal organs as compared to the body wall and introvert cum retractor muscles. Indeed, L-alanine inhibited pyruvate kinase from the body wall and introvert cum retractor muscles but had no effect on the pyruvate kinase from the internal organs. Furthermore, the activity of alanopine dehydrogenase present in the internal organs was significantly lower than those of the body wall and introvert cum retractor muscles. L-Alanine was an essential substrate for alanopine formation in the body wall and introvert cum retractor muscles during hypoxia since alanopine dehydrogenases from these body parts were L-alanine specific. When P. arcuatum was confronted with hypo-osmotic stress, the free D-alanine/total free alanine ratio in the internal organs increased approximately from 0.6 to 0.8 as the total free alanine content decreased. In comparison, those ratios in the body wall and introvert cum retractor muscles remained relatively constant. It was concluded that D- and D-alanine had different physiological functions in the three body parts of P. arcuatum.Abbreviations ADP adenosine-5-diphosphate - ADH alanopine dehydrogenase - ALT alanine aminotransferase - AOD amino acid oxidase - BW body wall - EDTA ethylenediaminetetra-acetic acid - EGT A ethylene glyco-bis (-aminoethyl ether) - N,N,N,N tetra-acetic acid - ICRM introvert cum retractor muscles - IO internal organs - I 50 inhibitor concentration producing 50% inhibition of enzyme activity - -KG -ketoglutarate - LDH lactate dehydrogenase - NAD nicotinamide adenine dinucleotide - NADH nicotinamide adenine dinucleotide (reduced form) - PEP phosphoenolpy-ruvate - PEPCK phosphoenolpyruvate carboxykinase - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - SE standard error - SW sea water - TCA trichloroacetic acid  相似文献   

19.
A. Razzaque  B. E. Ellis 《Planta》1977,137(3):287-291
Cell suspension cultures of Coleus blumei Benth. have been found to accumulate 8–11% of their dry weight as rosmarinic acid (-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid). Actively-growing tissue converts >20% of exogenously supplied phenylalanine and tyrosine to the caffeoyl ester and this high rate of synthesis coincides with an increase in phenylalanine ammonia-lyase specific activity. Administration to the cultures of known phenylpropanoid precursors of rosmarinic acid failed to enhance the latter's production and in some cases inhibited it.Abbreviations RA rosmarinic acid (-O-caffeoyl-3,4-dihydroxyphenyllactic acid - DOPA dihydroxyphenylalanine - PAL phenylalanine ammonialyase - DOPL dihydroxyphenyl-lactic acid  相似文献   

20.
(R)-(1-Amino-2-phenylethyl)phosphonic acid (R-APEP), an inhibitor of phenylalanine ammonia-lyase (PAL), was applied to the tap root of 42-h-old soybean (Glycine max. (L.) Merrill cv. Harosoy 63) seedlings during inoculation with zoospores of the incompatible race 1 of Phytophthora megasperma f.sp. glycinea (Pmg1) for 2 h and during a subsequent incubation period. In contrast to L-2-aminooxy-3-phenylpropionic acid, R-APEP was not toxic to the zoospores which remained virulent in presence of the inhibitor. A 50% inhibition of PAL activity in vitro was observed with 4.2 M R-APEP and with 36 M of the S-enantiomer. When R-APEP at 330 M was applied for a total of 36 h to the seedlings, resistance against Pmg 1 was abolished. Such seedlings were indistinguishable in appearance from those seedlings which had been inoculated with the compatible race 3 of Pmg. Roots treated with R-APEP at 330 M showed a reduction of about 47% in glyceollin content when measured 12 h after inoculation, and with 1 mM a 67% reduction. In contrast, treatment with S-APEP (1 mM) caused only a 20% reduction in glyceollin content. As determined by indirect immunofluorescence of fungal hyphae in cryotome cross-sections of roots, the growth pattern of the incompatible race 1 of Pmg changed to that of the compatible race 3 under conditions where R-APEP caused loss of resistance against Pmg 1. The results support the concept of an important role of glyceollin in resistance of soybean against incompatible races of the fungus.Abbreviations R-APEP, S-APEP R.S enantiomers of (1-amino-2-phenylethyl)phosphonic acid - L-AOPP L-2-aminooxy-3-phenylpropionic acid - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - Pmg 1 Phytophthora megasperma f.sp. glycinea race 1 - Pmg 3 Phytophthora megasperma f.sp. glycinea race 3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号