首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Direct observation of molecular motility by light microscopy   总被引:3,自引:0,他引:3  
We used video-fluorescence microscopy to directly observe the sliding movement of single fluorescently labeled actin filaments along myosin fixed on a glass surface. Single actin filaments labeled with phalloidin-tetramethyl-rhodamine, which stabilizes the filament structure of actin, could be seen very clearly and continuously for at least 60 min in 02-free solution, and the sensitivity was high enough to see very short actin filaments less than 40 nm long that contained less than eight dye molecules. The actin filaments were observed to move along double-headed and, similarly, single-headed myosin filaments on which the density of the heads varied widely in the presence of ATP, showing that the cooperative interaction between the two heads of the myosin molecule is not essential to produce the sliding movement. The velocity of actin filament independent of filament length (greater than 1 micron) was almost unchanged until the density of myosin heads along the thick filament was decreased from six heads/14.3 nm to 1 head/34 nm. This result suggests that five to ten heads are sufficient to support the maximum sliding velocity of actin filaments (5 micron/s) under unloaded conditions. In order for five to ten myosin heads to achieve the observed maximum velocity, the sliding distance of actin filaments during one ATP cycle must be more than 60 nm.  相似文献   

2.
Gerald S. Manning 《Biopolymers》2016,105(12):887-897
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar‐like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical‐chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress‐generating conformational changes in the myosin cross bridge, and relief of built‐up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin–myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin–myosin engagement during the weak‐to‐strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin–myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre‐power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.  相似文献   

3.
The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5′-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase and in vitro sliding of actin over myosin. TNP-Lys84-S1's properties and interactions with actin were examined to determine how trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.  相似文献   

4.
New data on the movements of tropomyosin singly labeled at alpha- or beta-chain during the ATP hydrolysis cycle in reconstituted ghost fibers have been obtained by using the polarized fluorescence technique which allowed us following the azimuthal movements of tropomyosin on actin filaments. Pronounced structural changes in tropomyosin evoked by myosin heads suggested the "rolling" of the tropomyosin molecule on F-actin surface during the ATP hydrolysis cycle. The movements of actin-bound tropomyosin correlated to the strength of S1 to actin binding. Weak binding of myosin to actin led to an increase in the affinity of the tropomyosin N-terminus to actin with simultaneous decrease in the affinity of the C-terminus. On the contrary, strong binding of myosin to actin resulted in the opposite changes of the affinity to actin of both ends of the tropomyosin molecule. Caldesmon inhibited the "rolling" of tropomyosin on the surface of the thin filament during the ATP hydrolysis cycle, drastically decreased the affinity of the whole tropomyosin molecule to actin, and "freezed" tropomyosin in the position characteristic of the weak binding of myosin to actin.  相似文献   

5.
On the basis of our recent studies of the sliding distance of actin filaments during one ATP cycle on the surface of myosin-coated glass surface and ATP hydrolysis by rapidly shortening myofibrils, the molecular mechanism of chemomechanical coupling is considered. We conclude that the myosin head can repeat many active cyclic interactions with actins to drive the actin filaments over a long distance during one ATP cycle, and that the distance is variable depending on the load.  相似文献   

6.
We have estimated the step size of the myosin cross-bridge (d, displacement of an actin filament per one ATP hydrolysis) in an in vitro motility assay system by measuring the velocity of slowly moving actin filaments over low densities of heavy meromyosin on a nitrocellulose surface. In previous studies, only filaments greater than a minimum length were observed to undergo continuous sliding movement. These filaments moved at the maximum speed (Vo), while shorter filaments dissociated from the surface. We have now modified the assay system by including 0.8% methylcellulose in the ATP solution. Under these conditions, filaments shorter than the previous minimum length move, but significantly slower than Vo, as they are propelled by a limited number of myosin heads. These data are consistent with a model that predicts that the sliding velocity (v) of slowly moving filaments is determined by the product of vo and the fraction of time when at least one myosin head is propelling the filament, that is, v = vo [1-(1-ts/tc)N], where ts is the time the head is strongly bound to actin, tc is the cycle time of ATP hydrolysis, and N is the average number of myosin heads that can interact with the filament. Using this equation, the optimum value of ts/tc to fit the measured relationship between v and N was calculated to be 0.050. Assuming d = vots, the step size was then calculated to be between 10nm and 28 nm per ATP hydrolyzed, the latter value representing the upper limit. This range is within that of geometric constraint for conformational change imposed by the size of the myosin head, and therefore is not inconsistent with the swinging cross-bridge model tightly coupled with ATP hydrolysis.  相似文献   

7.
A recent study with single molecule measurements has reported that muscle myosin, a molecular motor, stochastically generates multiple steps along an actin filament associated with the hydrolysis of a single ATP molecule [Kitamura, K., Tokunaga, M., Esaki, S., Iwane, A.H., Yanagida, T., 2005. Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1, 1-19]. We have built a model reproducing such a stochastic movement of a myosin molecule incorporated with ATPase reaction cycles and demonstrated that the thermal fluctuation was a key for the function of myosin molecules [Esaki, S., Ishii, Y., Yanagida, T., 2003. Model describing the biased Brownian movement of myosin. Proc. Jpn. Acad. 79 (Ser B), 9-14]. The size of the displacement generated during the hydrolysis of single ATP molecules was limited within a half pitch of an actin filament when a single myosin molecules work separately. However, in muscle the size of the displacement has been reported to be greater than 60 nm [Yanagida, T., Arata, T., Oosawa, F., 1985. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316, 366-369; Higuchi et al., 1991]. The difference suggests cooperative action between myosin heads in muscle. Here we extended the model built for an isolated myosin head to a system in which myosin heads are aligned in muscle arrangement to understand the cooperativity between heads. The simulation showed that the rotation of the actin filament [Takezawa, Y., Sugimoto, Y., Wakabayashi, K., 1998. Extensibility of the actin and myosin filaments in various states of skeletal muscles as studied by X-ray diffraction. Adv. Exp. Med. Biol. 453, 309-317; Wakabayashi, K., Ueno, Y., Takezawa, Y., Sugimoto, Y., 2001. Muscle contraction mechanism: use of X-ray synchrotron radiation. Nat. Enc. Life Sci. 1-11] associated with the release of ATPase products and binding of ATP as well as interaction between myosin heads allowed the myosin filament to move greater than a half pitch of the actin filament while a single ATP molecule is hydrolyzed. Our model demonstrated that the movement is loosely coupled to the ATPase cycle as observed in muscle.  相似文献   

8.
We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not involve a large change in the shape of the myosin head.  相似文献   

9.
Advances in experimental techniques have provided new details on the molecular mechanisms governing the cross-bridge kinetics. Nevertheless, the issue of micromechanics of sliding is still debated. In particular, uncertainty exists regarding the myosin filament arrangement and structure and the mechanics of the myosin head with respect to the working stroke distance (WS) and the duty ratio (r), i.e. the fraction of the ATPase cycle time the myosin head is attached to the actin filament. The object of the present work is to provide a theoretical framework to correlate different features of cross-bridge mechanics; the main hypothesis is that the attachment between the actin filament and the surrounding myosin filaments has to be continuous through the sliding (continuous sliding hypothesis) in order to maximise the effect of the myosin head performance. A 3-D model of the sliding mechanism based on a geometrical approach is presented, which is able to identify the architectures that accomplish the continuous sliding under unloaded conditions. About 200 different configurations have been simulated by changing the myosin head binding range, i.e. its ability to reach an actin binding site from its rest position, WS, the myosin head orientation and the actin filament orientation. Only few configurations were consistent with the continuous sliding hypothesis. Depending on the parameter set adopted, the percentage of attached heads (%AH) calculated ranges between 4% and 28%, r between 0.08 and 0.02 s−1, and the sliding velocity between 0.7 and 10.6 μm/s. In all the cases, results were not affected by the WS value.  相似文献   

10.
We measured isotonic sliding distance of single skinned fibers from rabbit psoas muscle when known and limited amounts of ATP were made available to the contractile apparatus. The fibers were immersed in paraffin oil at 20 degrees C, and laser pulse photolysis of caged ATP within the fiber initiated the contraction. The amount of ATP released was measured by photolyzing 3H-ATP within fibers, separating the reaction products by high-pressure liquid chromatography, and then counting the effluent peaks by liquid scintillation. The fiber stiffness was monitored to estimate the proportion of thick and thin filament sites interacting during filament sliding. The interaction distance, Di, defined as the sliding distance while a myosin head interacts with actin in the thin filament per ATP molecule hydrolyzed, was estimated from the shortening distance, the number of ATP molecules hydrolyzed by the myosin heads, and the stiffness. Di increased from 11 to 60 nm as the isotonic tension was reduced from 80% to 6% of the isometric tension. Velocity and Di increased with the concentration of ATP available. As isotonic load was increased, the interaction distance decreased linearly with decrease of the shortening velocity and extrapolated to 8 nm at zero velocity. Extrapolation of the relationship between Di and velocity to saturating ATP concentration suggests that Di reaches 100-190 nm at high shortening velocity. The interaction distance corresponds to the sliding distance while cross-bridges are producing positive (working) force plus the distance while they are dragging (producing negative forces). The results indicate that the working and drag distances increase as the velocity increases. Because Di is larger than the size of either the myosin head or the actin monomer, the results suggest that for each ATPase cycle, a myosin head interacts mechanically with several actin monomers either while working or while producing drag.  相似文献   

11.
When the sliding filament hypothesis was proposed in 1953-1954, existing evidence showed that (1) contributions to tension were given by active sites uniformly distributed within each zone of filament overlap and (2) each site functioned cyclically. These sites were identified by electron microscopy as cross-bridges between the two filaments, formed of the heads of myosin molecules projecting from a thick filament and attaching to a thin filament. The angle of these cross-bridges was found to be different at rest and in rigor, suggesting that the event causing relative motion of the filaments was a change of the angle of the cross-bridges. At first, it seemed likely that the whole cross-bridge rotated about its attachment to actin, but when the atomic structures of actin and myosin were obtained by X-ray crystallography, a possible hinge was found between the "catalytic domain" which attaches to the actin filament and the "light-chain domain" which appears to act as a lever arm. Two attitudes of the lever arm are now well established, the transition between them being driven by a conformational change coupled to some step in the hydrolysis of ATP, but several recent observations suggest that this is not the whole story: a third attitude has been shown by X-ray crystallography; a non-muscle myosin has been shown to produce its working stroke in two steps; and there are suggestions that an additional displacement of the filaments is produced by a change in the attitude of the catalytic domain on the thin filament.  相似文献   

12.
Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s−1 HMM−1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.  相似文献   

13.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

14.
Muscle myosins are molecular motors that convert the chemical free energy available from ATP hydrolysis into mechanical displacement of actin filaments, bringing about muscle contraction. Myosin cross-bridges exert force on actin filaments during a cycle of attached and detached states that are coupled to each round of ATP hydrolysis. Contraction and ATPase activity of the striated adductor muscle of scallop is controlled by calcium ion binding to myosin. This mechanism of the so-called “thick filament regulation” is quite different to vertebrate striated muscle which is switched on and off via “thin filament regulation” whereby calcium ions bind to regulatory proteins associated with the actin filaments. We have used an optically based single molecule technique to measure the angular disposition adopted by the two myosin heads whilst bound to actin in the presence and absence of calcium ions. This has allowed us to directly observe the movement of individual myosin heads in aqueous solution at room temperature in real time. We address the issue of how scallop striated muscle myosin might be regulated by calcium and have interpreted our results in terms of the structures of smooth muscle myosin that also exhibit thick filament regulation. This paper is not being submitted elsewhere and the authors have no competing financial interests  相似文献   

15.
Masuda T 《Bio Systems》2009,95(2):104-113
Myosins are molecular motors that convert the chemical energy of ATP into mechanical work called a power stroke. Class II myosin engaged in muscle contraction is reported to show a "loose coupling phenomenon", in which the number of power strokes is greater than the number of ATP hydrolyses. This phenomenon cannot be explained by the lever-arm hypothesis, which is currently accepted as a standard theory for myosin motility. In this paper, a model is proposed to reproduce the loose coupling phenomenon. The model is based on a mechanochemical process called "Driven by Detachment (DbD)" mechanism, which assumes that the energy of the power strokes originates from the potential energy generated by the attractive force between myosin and actin. During the docking process, the potential energy is converted into an intramolecular strain in a myosin molecule, which drives the power stroke after the myosin is firmly attached to an actin filament. The energy of ATP is used to temporarily reduce the attractive force and to increase the potential energy. Therefore, it is not directly linked to the power strokes. When myosin molecules work as an aggregate, the sliding movement of a myosin filament driven by the power strokes of some myosin heads makes other myosin heads that have completed their power strokes detach from the actin without consuming ATP. Under the DbD mechanism, these passively detached myosins can be again engaged in power strokes after the next attachment to actin. As a result, the number of power strokes becomes greater than the number of ATP hydrolyses, and the loose coupling phenomenon will be observed. A theoretical analysis indicates that the efficiency of converting the potential energy into intramolecular elastic energy determines the number of power strokes per each ATP hydrolysis. Computer simulations showed that the DbD mechanism actually produced the loose coupling phenomenon. A critical requirement for this mechanism is that ATP must preferentially facilitate the detachment of myosins that have completed their power strokes, but are still strongly attached to the actin. This requirement may be fulfilled by ATP hydrolysis tightly depending on the conformation of a myosin molecule.  相似文献   

16.
Troponin extracted from rabbit skeletal muscle directly binds to an actin filament in a molar ratio of 1:1 even in the absence of tropomyosin. An actin filament decorated with troponin did not exhibit significant difference from pure actin filaments in the maximum rate of actomyosin ATP hydrolysis and the sliding velocity of the filament examined by means of an in vitro motility assay. However, the relative number of troponin-bound actin filaments moving in the absence of calcium ions decreased to half that in their presence. The amount of HMM bound to the filaments was less than 4% of actin monomers in the presence of TNs. In addition, actin filaments could not move when Tn molecules were bound in the molar ratio of about 1:1 although they sufficiently bind to myosin heads. These results indicate that troponin can transform an actin monomer within a filament into an Off-state without sterically blocking of the myosin-binding sites with tropomyosin molecules.  相似文献   

17.
Kitamura K  Yanagida T 《Bio Systems》2003,71(1-2):101-110
The epoch-making techniques for manipulating a single myosin molecule have recently been developed, and the unitary mechanical reactions of a single actomyosin, muscle motor molecule, are directly measured. The data show that the unitary mechanical step during sliding along an actin filament of approximately 5.5 nm, but groups of two to five rapid steps in succession produce displacements of approximately 11-30 nm. The instances of multiple stepping are produced by single myosin heads during one biochemical cycle of ATP hydrolysis. Thus, the coupling between ATP hydrolysis cycle and mechanical step is variable, i.e. loose-coupling. Such a unique operation of actomyosin molecules is different from that of man-made machines, and most likely explains the flexible and effective mechanisms of molecular machines in the biosystems.  相似文献   

18.
The rate-limiting step in the actomyosin adenosinetriphosphatase cycle   总被引:3,自引:0,他引:3  
We have previously shown that myosin does not have to detach from actin during each cycle of ATP hydrolysis. In the present study, using the A-1 isoenzyme of myosin subfragment 1, we have investigated the nature of the rate-limiting steps in the ATPase cycle. Our results show that, at 15 degrees C, at very low ionic strength, KATPase determined from the double-reciprocal plot of ATPase activity vs. actin concentration is more than 6-fold stronger than KBINDING determined by directly measuring the binding of A-1 myosin subfragment 1 to actin during steady-state ATP hydrolysis. Computer modeling shows that this large difference between KATPase and KBINDING is not compatible with Pi release being the rate-limiting step in the ATPase cycle. If Pi release is not rate limiting, it is possible that the ATP hydrolysis step, itself, is rate limiting. However, this predicts that, at high actin concentration, the value of the initial Pi burst should be close to zero. Therefore, we measured the magnitude of the initial Pi burst in the presence of actin, using both direct measurement and measurement of relative fluorescence magnitude. Our results suggest that the magnitude of the initial Pi burst in the presence of actin is considerably higher than would be expected if the ATP hydrolysis step were the rate-limiting step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

20.
An actin filament sliding on myosin molecules in the presence of an extremely low concentration of ATP exhibited a staggered movement. Longitudinally sliding movement of the filament was frequently interrupted by its non-sliding, fluctuating movements both in the longitudinal and transversal directions. Intermittent sliding movements of an actin filament indicate establishment of a coordination of ATP-mediated active sites distributed along the filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号