首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
NO缓解玉米幼苗盐胁迫伤害的生理机制   总被引:1,自引:0,他引:1  
以玉米幼苗为材料,通过NO的供体硝普纳(SNP)的合成抑制剂L-NAME和NaN3、清除剂cPTIO组合处理,分析外源NO和IAA对盐胁迫下玉米幼苗生长,以及NO对盐胁迫下玉米幼苗叶片和根尖IAA含量、IOD和POD活性的影响,以探讨NO与IAA在提高植物抗盐性中的关系.结果表明,盐胁迫下,SNP和IAA均能显著促进玉米幼苗株高、主根长和侧根数的增加;SNP能显著提高玉米幼苗叶片和根尖IAA含量,降低IOD和POD活性;L-NAME和NaN3及cPTIO均能有效减弱SNP诱导的IAA含量的增加.由此可见,在盐胁迫条件下,NO信号可能位于IAA信号的上游,它通过促进玉米幼苗內源IAA的积累缓解盐胁迫对其生长的抑制.  相似文献   

2.
NaCl胁迫下玉米幼苗中一氧化氮与茉莉酸积累的关系   总被引:3,自引:0,他引:3  
以三叶一心期的玉米幼苗为材料,研究了NaCl胁迫下玉米幼苗根尖和叶片中一氧化氮(NO)和茉莉酸(JA)积累之间的关系.结果表明:NaCl胁迫下玉米幼苗根尖和叶片中NO和JA的含量均增加,且NO积累的时间早于JA;根尖中脂氧合酶(LOX)活性逐渐降低,而叶片中LOX活性显著升高.硝普钠(SNP,NO供体)处理使幼苗的JA含量和LOX活性亦增加;用NO清除剂cPTIO及NO合成的抑制剂L-NAME、NaN3处理幼苗时,可抑制NaCl胁迫诱导的JA积累以及叶片中LOX活性的增加.可见,玉米幼苗在盐胁迫下爆发的NO可能通过调控LOX活性来调节其JA的积累.  相似文献   

3.
一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累   总被引:12,自引:1,他引:11  
以三叶一心期的玉米幼苗为实验材料,研究了盐胁迫下玉米幼苗根尖和叶片中一氧化氮(NO)和脱落酸(ABA)积累之间的关系。结果表明,盐胁迫下玉米幼苗NO和ABA的含量均增加,用NO供体硝普钠(Sodium nitroprusside,SNP)处理时,ABA含量亦增加,且累积的时间较盐胁迫下早。用NO合成的抑制剂L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride)和NaN,处理时,可减弱盐胁迫诱导的ABA含量的增加,用NO清除剂cPTIO处理时,这种盐胁迫诱导的ABA增加减少。推测盐胁迫下产生的NO参与调节ABA的积累及逆境下植物的防御反应。  相似文献   

4.
一氧化氮(NO)对镉胁迫下小麦幼苗氧化损伤的影响   总被引:1,自引:0,他引:1  
为探讨一氧化氮(NO)对重金属镉胁迫后小麦幼苗氧化损伤的影响。采用营养液水培法,以"晋麦8号"为材料,一氧化氮供体硝普钠(SNP),NO清除剂牛血红蛋白(Hb)及SNP类似物亚铁氰化钠(SF)分别处理小麦幼苗,研究NO在镉(Cd)胁迫下对小麦幼苗抗氧化系统的影响。结果显示,SNP处理可以缓解镉胁迫对幼苗生长抑制,显著增加可溶性蛋白、叶绿素和GSH含量,减少丙二醛(MDA)和过氧化氢(H2O2)的含量,并降低超氧阴离子(O2·-)产生速率、可溶性糖和脯氨酸的积累。而NO清除剂牛血红蛋白(Hb)处理使镉胁迫对小麦幼苗的毒害增强,SNP类似物亚铁氰化钠(SF)处理则没有缓解效应;进一步实验发现,SNP降低了镉胁迫下超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)和抗坏血酸过氧化物酶(APX)等抗氧化相关酶的活性,减轻了镉胁迫的氧化损伤。NO可以通过调节抗氧化酶系统来缓解Cd对植物的毒害。  相似文献   

5.
NO对盐胁迫下苜蓿根系生长抑制及氧化损伤的缓解效应   总被引:7,自引:0,他引:7  
周万海  冯瑞章  师尚礼  寇江涛 《生态学报》2015,35(11):3606-3614
以"甘农4号"苜蓿品种为材料,采用水培法,用NO供体硝普钠(SNP)、硝普钠类似物亚铁氰化钠(不产生NO)、NO特异清除剂c-PTIO、一氧化氮合酶(NOS)活性抑制剂N-硝基-L-精氨酸甲脂(L-NAME)、硝酸还原酶(NR)活性抑制剂钨酸盐处理苜蓿植株,研究NO对盐胁迫下苜蓿幼苗根系生长、根系活力、根系中渗透调节物质、膜脂过氧化、活性氧含量及抗氧化酶活性等的影响,探讨NO调控苜蓿幼苗根系耐盐性的生理机制。结果表明:盐胁迫下SNP处理提高了根系活力,促进了苜蓿幼苗根系生长,降低游离脯氨酸含量,促进可溶性蛋白含量增加;增强超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、愈创木酚过氧化物酶(GPX)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,提高还原型抗坏血酸(As A)和还原型谷胱甘肽(GSH)含量,降低过氧化氢(H2O2)、羟自由基(OH·)含量、超氧阴离子(O·-2)产生速率和膜脂过氧化产物丙二醛(MDA)含量;同时,SNP处理显著促进了苜蓿幼苗根系内源NO的积累。NO供体SNP的类似物亚铁氰化钠对盐胁迫下苜蓿根系各项生理生化指标无明显影响;盐胁迫下添加c-PTIO、L-NAME和钨酸盐进一步降低了苜蓿幼苗根系活力和根系生长,抑制了根系抗氧化系统活性,加剧了根系膜脂过氧化作用,降低了内源NO积累,添加SNP则能缓解该抑制效应;表明外源SNP处理能明显缓解盐胁迫对苜蓿幼苗根系生长的抑制和氧化损伤,且通过NOS和NR途径产生的内源NO也可能在苜蓿根系适应盐胁迫的调节中起关键作用;该研究结果为苜蓿耐盐机制及NO在苜蓿耐盐育种、化学调控和盐碱地栽培利用等提供了理论依据。  相似文献   

6.
以"陇春27"号水培小麦幼苗为研究材料,外源添加水杨酸(SA)、一氧化氮(NO)清除剂(carboxy-PTIO,c-PTIO)、NO供体硝普钠(SNP)、硝酸还原酶(NR)抑制剂钨酸盐(Tungstate)及NO合成酶(NOS)抑制剂(L-NAME)进行不同预处理,分析其在镉(Cd)胁迫下根的生长和叶片叶绿素含量的变化,探讨SA和NO互作对小麦幼苗Cd胁迫的缓解机制。结果表明:随着Cd处理时间的延长,小麦幼苗根中SA含量显著降低,NO含量则呈现先增加(6 h和12 h)后减少(24 h和48 h)的趋势;Cd胁迫抑制了小麦幼苗根的生长,减少了叶片叶绿素的含量,而一定浓度的SA或SNP预处理可以缓解Cd胁迫对小麦幼苗根长的抑制作用,增加叶绿素的含量。c-PTIO、L-NAME和Tungstate单独预处理显著抑制了小麦幼苗根的生长,减少了NO的含量,但不影响叶绿素含量。SA400+L-NAME预处理可以缓解Cd胁迫对小麦幼苗根长的抑制作用以及叶绿素和NO含量的减少作用;SA400+c-PTIO或SA400+Tungstate预处理可增加Cd胁迫下叶绿素的含量,但对根的伸长无影响。进一步研究发现,Cd胁迫抑制了NR的活性,而SA400预处理可以使Cd胁迫下NR的活性增强,不同处理对NOS的活性均无影响。综上所述,Cd胁迫导致小麦幼苗根内源SA含量降低和NO含量先升高再降低;外源添加SA或SNP预处理缓解了Cd胁迫对根生长的抑制和叶绿素含量降低的作用;外源SA通过影响NO的产生从而提高小麦幼苗对Cd胁迫的耐受性,最终缓解了Cd对小麦幼苗的毒害作用。  相似文献   

7.
NO参与玉米幼苗对盐胁迫的应答   总被引:1,自引:0,他引:1  
以玉米幼苗为材料,研究盐胁迫下其內源NO含量、NR和NOS活性的变化;NOS专一性抑制剂L-NAME和NR非专一性抑制剂NaN3对玉米幼苗內源NO含量的影响;利用激光共聚焦显微技术观测盐胁迫下玉米幼苗根部NO含量的变化及其分布特点。结果表明,盐胁迫下玉米幼苗根尖和叶片中NO含量有猝发现象,NOS活性也随之显著提高,NR活性则显著降低;L-NAME或NaN3均可降低盐胁迫所引起的玉米幼苗NO水平的增加,L-NAME对NO含量的影响比NaN3更显著。推测,NO参与玉米幼苗对盐胁迫的应答,NOS途径是盐胁迫下玉米幼苗內源NO合成的主要途径。  相似文献   

8.
【摘要】通过室内盆栽试验, 研究了40 mg·kg-1 Cd(CdCl2·2.5 H2O)胁迫下, 不同浓度乙二胺二琥珀酸(EDDS)(0、0.5、1.5、2.5、5.0 mmol·L-1)单施及EDDS与一氧化氮(NO)供体硝普钠(SNP)(0、0.25、0.5、1.0 mmol·L-1)联合施加对三叶鬼针草(Bidens pilosa L.)幼苗应激信号分子NO产生量和一氧化氮合酶(NOS)活性的影响。结果表明: 单施EDDS, 植株不同部位NO生成量随EDDS浓度的升高呈增加趋势, 5.0 mmol·L-1时达到最大; 0.5 mmol·L-1的EDDS可增强根、叶中NOS活性。在探究NO产生较多和NOS活性增强显著的EDDS处理浓度与SNP联合施加的研究中发现, 随SNP浓度的升高, 根中NO生成量先升高后降低, 茎和叶中持续升高; 适宜浓度的SNP可进一步增强植株体内NOS活性。EDDS诱导NO的生成会被硝酸还原酶(NR)抑制剂(NaN3)和NOS抑制剂(L-NAME)抑制, 对EDDS处理下NOS活性影响较小。NO清除剂(c-PTIO)能有效清除部分NO, 增强根和叶中NOS活性。因此, 在Cd胁迫下, 适宜浓度的EDDS单施及与SNP联合施加都会增加三叶鬼针草幼苗体内NO产生量。  相似文献   

9.
盐胁迫下外源NO对苜蓿幼苗生长及氮代谢的影响   总被引:1,自引:0,他引:1  
为探寻增强苜蓿耐盐能力的调控途径,以甘农4号苜蓿品种为材料,采用NO供体硝普钠、NO清除剂c-PTIO及硝普钠类似物亚铁氰化钠处理苜蓿幼苗,研究盐胁迫下外源NO对苜蓿幼苗生长、光合特征、氮同化酶活性和氮代谢物含量的影响.结果表明: 外源NO能明显缓解盐胁迫对苜蓿幼苗生长及光合作用的抑制,单株干质量、叶绿素含量、净光合速率、蒸腾速率和可溶性蛋白含量增加;外源NO能增强硝酸还原酶、谷氨酰胺合成酶和谷氨酸合酶活性,抑制蛋白水解酶和谷氨酸脱氢酶活性, 降低叶片中游离氨基酸含量,提高硝态氮含量,加快铵的同化.NO供体SNP的类似物亚铁氰化钠对盐胁迫下苜蓿幼苗生长及氮代谢无调控作用;施用NO清除剂c-PTIO加剧了盐胁迫对苜蓿幼苗生长和氮代谢的抑制,添加外源NO能缓解c-PTIO的抑制效应.盐胁迫下,外源NO和内源NO均参与了苜蓿幼苗氮代谢的调控.  相似文献   

10.
一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响   总被引:47,自引:2,他引:45  
0.05和0.10 mmol/L一氧化氮(NO)供体硝普钠(sodium mtropmsside,SNP)处理明显减轻NaCl浓度为150 mmo1/L左右的盐胁迫对小麦幼苗根生长的抑制效应,其中0.05mmol/L的SNP效果最明显;0.30mmol/L以上的SNP处理对根抑制无明显缓解作用;当NaCl浓度大于300 mmol/L时,各种浓度的SNP均不能减轻盐胁迫对根生长的抑制.以N O清除剂血红蛋白(hemoglobin,Hb)以及NOx-,K3Fe(CN)6等为对照,观察到0.05 mmol/L的SNP能不同程度地提高150mmo/L盐胁迫下小麦幼苗根尖细胞中超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(ascorbateperoxidase,APX)活性,明显降低MDA、H2O2和O2-.的积累,阻断盐胁迫诱导的根尖细胞DNA片段化,表明NO能有效缓解盐胁迫引起的小麦幼苗根尖细胞的氧化损伤.  相似文献   

11.
12.
13.
14.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

15.
16.
17.
18.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号