首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gong TW  Winnicki RS  Kohrman DC  Lomax MI 《Gene》1999,239(1):117-127
Kinesin and kinesin-related proteins are microtubule-dependent motor proteins that transport organelles. We have cloned and sequenced a full-length 9924 bp mouse cDNA for a new kinesin of the UNC-104/KIF1 subfamily. Northern blot analysis of mouse RNAs detected high levels of a 10 kb mRNA in brain and eye, but lower levels in other tissues. Human RNA dot-blot analysis detected this mRNA in all tissues examined, although at different levels. The overall structure of the new kinesin (predicted size 204 kDa) was most similar to mouse KIF1A; however, 2.1 kb of the 5' portion of the cDNA were identical to the published sequence for KIF1B (Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., Hirokawa, N., 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220). We localized the Kif1b gene to the distal end of mouse Chromosome 4 by haplotype analysis of an interspecific backcross from The Jackson Laboratory. We had previously mapped the gene for the novel kinesin to the same location (Gong, T.-W.L., Burmeister, M., Lomax, M.I., 1996b. The novel gene D4Mille maps to mouse Chromosome 4 and human Chromosome 1p36. Mamm. Genome 7, 790-791). We conclude, therefore, that the Kif1b gene generates two major kinesin isoforms by alternative splicing. The shorter 7.8 kb mRNA encodes a 130 kDa kinesin, KIF1Bp130, whereas the 10 kb mRNA encodes a 204 kDa kinesin, KIF1Bp204. In addition, alternative splicing of two exons in the conserved region adjacent to the motor domain generates four different isoforms of each kinesin, leading to eight kinesin isoforms derived from the Kif1b gene.  相似文献   

3.
Kinesins are tetrameric motor molecules, consisting of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) that are involved in transport of cargo along microtubules. The function of the light chain may be in cargo binding and regulation of kinesin activity. In the mouse, two KLC genes, KLC1 and KLC2, had been identified. KLC1 plays a role in neuronal transport, and KLC2 appears to be more widely expressed. We report the cloning from a testicular cDNA expression library of a mammalian light chain, KLC3. The KLC3 gene is located in close proximity to the ERCC2 gene. KLC3 can be classified as a genuine light chain: it interacts in vitro with the KHC, the interaction is mediated by a conserved heptad repeat sequence, and it associates in vitro with microtubules. In mouse and rat testis, KLC3 protein expression is restricted to round and elongating spermatids, and KLC3 is present in sperm tails. In contrast, KLC1 and KLC2 can only be detected before meiosis in testis. Interestingly, the expression profiles of the three known KHCs and KLC3 differ significantly: Kif5a and Kif5b are not expressed after meiosis, and Kif5c is expressed at an extremely low level in spermatids but is not detectable in sperm tails. Our characterization of the KLC3 gene suggests that it carries out a unique and specialized role in spermatids.  相似文献   

4.
A screen for genes required in Drosophila eye development identified an UNC-104/Kif1 related kinesin-3 microtubule motor. Analysis of mutants suggested that Drosophila Unc-104 has neuronal functions that are distinct from those of the classic anterograde axonal motor, kinesin-1. In particular, unc-104 mutations did not cause the distal paralysis and focal axonal swellings characteristic of kinesin-1 (Khc) mutations. However, like Khc mutations, unc-104 mutations caused motoneuron terminal atrophy. The distributions and transport behaviors of green fluorescent protein-tagged organelles in motor axons indicate that Unc-104 is a major contributor to the anterograde fast transport of neuropeptide-filled vesicles, that it also contributes to anterograde transport of synaptotagmin-bearing vesicles, and that it contributes little or nothing to anterograde transport of mitochondria, which are transported primarily by Khc. Remarkably, unc-104 mutations inhibited retrograde runs by neurosecretory vesicles but not by the other two organelles. This suggests that Unc-104, a member of an anterograde kinesin subfamily, contributes to an organelle-specific dynein-driven retrograde transport mechanism.  相似文献   

5.
Sensory cilia and intraflagellar transport (IFT), a pathway essential for ciliogenesis, play important roles in embryonic development and cell differentiation. In vertebrate photoreceptors IFT is required for the early development of ciliated sensory outer segments (OS), an elaborate organelle that sequesters the many proteins comprising the phototransduction machinery. As in other cilia and flagella, heterotrimeric members of the kinesin 2 family have been implicated as the anterograde IFT motor in OS. However, in Caenorhabditis elegans, OSM-3, a homodimeric kinesin 2 motor, plays an essential role in some, but not all sensory cilia. Kif17, a vertebrate OSM-3 homologue, is known for its role in dendritic trafficking in neurons, but a function in ciliogenesis has not been determined. We show that in zebrafish Kif17 is widely expressed in the nervous system and retina. In photoreceptors Kif17 co-localizes with IFT proteins within the OS, and co-immunoprecipitates with IFT proteins. Knockdown of Kif17 has little if any effect in early embryogenesis, including the formation of motile sensory cilia in the pronephros. However, OS formation and targeting of the visual pigment protein is severely disrupted. Our analysis shows that Kif17 is essential for photoreceptor OS development, and suggests that Kif17 plays a cell type specific role in vertebrate ciliogenesis.  相似文献   

6.
Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by?MAPs represents a previously undiscovered mode of control of kinesin transport and provides?a mechanism for regulation of MT-based transport by local signals.  相似文献   

7.
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.  相似文献   

8.
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of intracellular transport involving microtubule-dependent motors, a cDNA encoding a new kinesin-like protein called KifC3 was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KifC3 is a member of the C-terminal motor family. In contrast to other mouse C-terminal motors, KifC3 is apparently ubiquitous and may have a general role in intracellular transport. To understand the in vivo function of the KifC3 gene, we used homologous recombination in embryonic stem cells to construct knockout mouse strains for the KifC3 gene. Homozygous mutants of the KifC3 gene are viable, reproduce normally, and apparently develop normally. These results suggest that KifC3 is dispensable for normal development and reproduction in the mouse.  相似文献   

9.
Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal‐D‐related protein 1 (BICDR‐1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR‐1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6‐positive secretory vesicles and is required for neural development in zebrafish. BICDR‐1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR‐1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR‐1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR‐1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation.  相似文献   

10.
11.
Although kinesins are known to transport neuronal proteins, it is not known what role they play in the targeting of their cargos to specific subcellular compartments in neurons. Here we present evidence that the K+ channel Kv4.2, which is a major regulator of dendritic excitability, is transported to dendrites by the kinesin isoform Kif17. We show that a dominant negative construct against Kif17 dramatically inhibits localization to dendrites of both introduced and endogenous Kv4.2, but those against other kinesins found in dendrites do not. Kv4.2 colocalizes with Kif17 but not with other kinesin isoforms in dendrites of cortical neurons. Native Kv4.2 and Kif17 coimmunoprecipitate from brain lysate, and introduced, tagged versions of the two proteins coimmunoprecipitate from COS cell lysate, indicating that the two proteins interact, either directly or indirectly. The interaction between Kif17 and Kv4.2 appears to occur through the extreme C terminus of Kv4.2 and not through the dileucine motif. Thus, the dileucine motif does not determine the localization of Kv4.2 by causing the channel to interact with a specific motor protein. In support of this conclusion, we found that the dileucine motif mediates dendritic targeting of CD8 independent of Kif17. Together our data show that Kif17 is probably the motor that transports Kv4.2 to dendrites but suggest that this motor does not, by itself, specify dendritic localization of the channel.  相似文献   

12.
《The Journal of cell biology》1994,127(4):1041-1048
This paper describes the molecular and biochemical properties of KLP68D, a new kinesin-like motor protein in Drosophila melanogaster. Sequence analysis of a full-length cDNA encoding KLP68D demonstrates that this protein has a domain that shares significant sequence identity with the entire 340-amin acid kinesin heavy chain motor domain. Sequences extending beyond the motor domain predict a region of alpha-helical coiled-coil followed by a globular "tail" region; there is significant sequence similarity between the alpha-helical coiled- coil region of the KLP68D protein and similar regions of the KIF3 protein of mouse and the KRP85 protein of sea urchin. This finding suggests that all three proteins may be members of the same family, and that they all perform related functions. KLP68D protein produced in Escherichia coli is, like kinesin itself, a plus-end directed microtubule motor. In situ hybridization analysis of KLP68D RNA in Drosophila embryos indicates that the KLP68D gene is expressed primarily in the central nervous system and in a subset of the peripheral nervous system during embryogenesis. Thus, KLP68D may be used for anterograde axonal transport and could conceivably move cargoes in fly neurons different than those moved by kinesin heavy chain or other plus-end directed motors.  相似文献   

13.
In axons, organelles move away from (anterograde) and toward (retrograde) the cell body along microtubules. Previous studies have provided compelling evidence that conventional kinesin is a major motor for anterograde fast axonal transport. It is reasonable to expect that cytoplasmic dynein is a fast retrograde motor, but relatively few tests of dynein function have been reported with neurons of intact organisms. In extruded axoplasm, antibody disruption of kinesin or the dynactin complex (a dynein activator) inhibits both retrograde and anterograde transport. We have tested the functions of the cytoplasmic dynein heavy chain (cDhc64C) and the p150(Glued) (Glued) component of the dynactin complex with the use of genetic techniques in Drosophila. cDhc64C and Glued mutations disrupt fast organelle transport in both directions. The mutant phenotypes, larval posterior paralysis and axonal swellings filled with retrograde and anterograde cargoes, were similar to those caused by kinesin mutations. Why do specific disruptions of unidirectional motor systems cause bidirectional defects? Direct protein interactions of kinesin with dynein heavy chain and p150(Glued) were not detected. However, strong dominant genetic interactions between kinesin, dynein, and dynactin complex mutations in axonal transport were observed. The genetic interactions between kinesin and either Glued or cDhc64C mutations were stronger than those between Glued and cDhc64C mutations themselves. The shared bidirectional disruption phenotypes and the dominant genetic interactions demonstrate that cytoplasmic dynein, the dynactin complex, and conventional kinesin are interdependent in fast axonal transport.  相似文献   

14.
Microtubule (MT)-based motor proteins, kinesins and dyneins, play important roles in multiple cellular processes including cell division. In this study, we describe the generation and use of an Escherichia coli RNase III-prepared human kinesin/dynein esiRNA library to systematically analyze the functions of all human kinesin/dynein MT motor proteins. Our results indicate that at least 12 kinesins are involved in mitosis and cytokinesis. Eg5 (a member of the kinesin-5 family), Kif2A (a member of the kinesin-13 family), and KifC1 (a member of the kinesin-14 family) are crucial for spindle formation; KifC1, MCAK (a member of the kinesin-13 family), CENP-E (a member of the kinesin-7 family), Kif14 (a member of the kinesin-3 family), Kif18 (a member of the kinesin-8 family), and Kid (a member of the kinesin-10 family) are required for chromosome congression and alignment; Kif4A and Kif4B (members of the kinesin-4 family) have roles in anaphase spindle dynamics; and Kif4A, Kif4B, MKLP1, and MKLP2 (members of the kinesin-6 family) are essential for cytokinesis. Using immunofluorescence analysis, time-lapse microscopy, and rescue experiments, we investigate the roles of these 12 kinesins in detail.  相似文献   

15.
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. In the mouse, several kinesin motors have been characterized and are suggested to play roles in axonal and/or dendritic transport. One such kinesin is KifC2. Sequence and secondary structure analysis revealed that KifC2 is a member of the C-terminal motor family. Northern and Western blot analyses indicated that KifC2 is specifically expressed in both the central and peripheral nervous systems. The cellular locations of the KifC2 proteins were found to be mainly in neural cell bodies and dendrites but also in axons. To understand the in vivo function of the KifC2 gene, we used homologous recombination in embryonic stem cells to construct knockout mouse strains for the KifC2 gene. Homozygous KifC2 mutants were viable and reproduced normally, and their development was apparently normal. These results suggest that KifC2 is dispensable for normal neural development and behavior in the mouse.  相似文献   

16.
The heteromeric kinesins constitute a subfamily of kinesin-related motor complexes that function in several distinct intracellular transport events. The founding member of this subfamily, heterotrimeric kinesin II, has been purified and characterized from early sea urchin embryos, where it was shown using antibody perturbation to be required for the synthesis of motile cilia, presumably by driving the anterograde transport of raft complexes. To further characterize heteromeric kinesin transport pathways, and to attempt to identify cargo molecules, we are using the model organism Caenorhabditis elegans to exploit its well-characterized nervous system and simple genetics. Here we describe methods for large-scale nematode growth and partial purification of kinesin-related holoenzymes from C. elegans, and an in vivo transport assay that allows the direct labeling and visualization of motor complexes and putative cargo molecules moving in living C. elegans neurons. This transport assay is being used to characterize the in vivo transport properties of motor enzymes in living cells, and to exploit a number of existing mutations in C. elegans that may represent constituents of heteromeric kinesin-driven transport pathways, for example, the retrograde intraflagellar transport motor CHE-3 dynein, as well as cargo molecules and/or regulatory molecules.  相似文献   

17.
Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family.  相似文献   

18.
Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations.  相似文献   

19.
Dynactin is required for bidirectional organelle transport   总被引:19,自引:0,他引:19       下载免费PDF全文
Kinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II-mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II-associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530-793 of XKAP and aa 600-811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.  相似文献   

20.
Microtubule-based kinesin motors have many cellular functions, including the transport of a variety of cargos. However, unconventional roles have recently emerged, and kinesins have also been reported to act as scaffolding proteins and signaling molecules. In this work, we further extend the notion of unconventional functions for kinesin motor proteins, and we propose that Kif13b kinesin acts as a signaling molecule regulating peripheral nervous system (PNS) and central nervous system (CNS) myelination. In this process, positive and negative signals must be tightly coordinated in time and space to orchestrate myelin biogenesis. Here, we report that in Schwann cells Kif13b positively regulates myelination by promoting p38γ mitogen-activated protein kinase (MAPK)-mediated phosphorylation and ubiquitination of Discs large 1 (Dlg1), a known brake on myelination, which downregulates the phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homolog (AKT) pathway. Interestingly, Kif13b also negatively regulates Dlg1 stability in oligodendrocytes, in which Dlg1, in contrast to Schwann cells, enhances AKT activation and promotes myelination. Thus, our data indicate that Kif13b is a negative regulator of CNS myelination. In summary, we propose a novel function for the Kif13b kinesin in glial cells as a key component of the PI3K/AKT signaling pathway, which controls myelination in both PNS and CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号