首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

2.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

3.
H B Smith  F C Hartman 《Biochemistry》1991,30(21):5172-5177
Ribulosebisphosphate carboxylase/oxygenase is reversibly activated by the reaction of CO2 with a specific lysyl residue (Lys191 of the Rhodospirillum rubrum enzyme) to form a carbamate that coordinates an essential Mg2+ cation. Surprisingly, the Lys191----Cys mutant protein, in the presence of CO2 and Mg2+, exhibits tight binding of the reaction intermediate analogue 2-carboxyarabinitol bisphosphate [Smith, H. B., Larimer, F. W., & Hartman, F. C. (1988) Biochem. Biophys. Res. Commun. 152, 579-584], a property normally equated with effective coordination of the Mg2+ by the carbamate. Catalytic ineptness of the Cys191 mutant protein, despite its ability to coordinate Mg2+ properly, might be due to the absence of the carbamate nitrogen. To investigate this possibility, we have evaluated the ability of exogenous amines to restore catalytic activity to the mutant protein. Significantly, the Cys191 protein manifests ribulose bisphosphate dependent fixation of 14CO2 when incubated with aminomethanesulfonate but not ethanesulfonate. This novel activity reflects a Km value for ribulose bisphosphate which is not markedly perturbed relative to wild-type enzyme, a Km for Mg2+ which is in fact decreased 10-fold, and rate saturation with respect to aminomethanesulfonate (Kd = 8 mM). Chromatographic and spectrophotometric analyses reveal the product of CO2 fixation to be D-3-phosphoglycerate, while turnover of [1-3H]ribulose bisphosphate into [3H]phosphoglycolate confirms oxygenase activity. We conclude that aminomethanesulfonate restored ribulosebisphosphate carboxylase/oxygenase activities to the Cys191 mutant protein by providing a nitrogenous function which satisfies a catalytic demand normally met by the carbamate nitrogen of Lys191.  相似文献   

4.
The half-saturation constants for binding of the bivalent cations (Mg2+, Ni2+, Co2+, Fe2+ and Mn2+) to ribulose bisphosphate carboxylase/oxygenase from Glycine max and Rhodospirillum rubrum were measured. The values obtained were dependent on the enzyme and the cation present, but were the same for both oxygenase and carboxylase activities. Ribulose bisphosphate rather than its cation complex was the true substrate. The kinetic parameters Vmax.(CO2), Vmax.(O2), Km(CO2), Km(O2), and K1(O2) were determined for both enzymes and each cation activator. The evolutionary and mechanistic implications of these data are discussed.  相似文献   

5.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

6.
The Michaelis constants of soya-bean ribulose bisphosphate carboxylase for CO2 in the carboxylation reaction and for O2 in the oxygenation reaction depend on the nature of the bivalent cation present. In the presence of Mg2+ the Km for bicarbonate is 2.48 mM, and the Km for O2 is 37% (gas-phase concentration). With Mn2+ the values decrease to 0.85 mM and 1.7% respectively. For the carboxylation reaction Vmax. was 1.7 mumol/min per mg of protein with Mg2+ but only 0.29 mumol/min per mg of protein with Mn2+. For the oxygenation reaction, Vmax. values were 0.61 and 0.29 mumol/min per mg of protein respectively with Mg2+ and Mn2+.  相似文献   

7.
The large and small subunits of ribulose bisphosphate carboxylase from Chromatium vinosum were dissociated and separated at pH 9.6 by sucrose density gradient centrifugation. After further purification by gel filtration, the small subunit fraction contained no carboxylase activity. The large subunit fraction was highly depleted of small subunit based on analysis by denaturing polyacrylamide gel electrophoresis. Carboxylase activity of the large subunit fraction was approximately 1% of the untreated native enzyme. Addition of purified small subunit to the large subunit fraction yielded increases of up to 67-fold in carboxylase activity, further indicating that both subunit types are required for catalysis by this enzyme. The isolated large subunit was fully capable of high-affinity activator 14CO2 binding in the presence of Mg2+ and 2-carboxyarabinitol bisphosphate, indicating that the activator and catalytic sites were not grossly denatured by the depletion of small subunit. Kinetic constants of the native C. vinosum enzyme defined a new class of ribulose bisphosphate carboxylase, which permits the detection of possible kinetic differences if the large and small subunits can be favorably reassembled with those of another kinetic class. From experiments with the enzymes from tobacco and spinach leaves it is concluded that the enzyme from higher plant sources is not suitable for such dissociation/reconstitution-type experiments.  相似文献   

8.
Bicarbonate stabilization of ribulose 1,5-diphosphate carboxylase.   总被引:13,自引:0,他引:13  
W A Laing  W L Ogren  R H Hageman 《Biochemistry》1975,14(10):2269-2275
The carboxylase and oxygenase activities of purified soybean ribulose 1,5-di-P carboxylase (EC4.1.1.39) were unstable when reactions were initiated with enzyme. Time courses of carboxylase and oxygenase activities were curvilinear, approximating hyperbolas. Double reciprocal plots of amount of CO2 incorporated and P-glycolate produced vs. time were constructed to determine a constant representing the half-time of initial enzyme activity, K. K increased with increasing bicarbonate concentration but was independent of O2 tensions between 0.21 and 5 atm. When time courses of carboxylase and oxygenase activities were determined simultaneously, K was identical for both activities. Linear time courses were obtained py preincubation of the enzyme for 10 min in the absence of bicarbonate or by adding 46 mM MgCl2 to the reaction mixture. The observed bicarbonate-dependent decline in ribulose 1,5-di-P carboxylase activity with time is the probable cause for the anomalously high Km(CO2) values previously reported for this enzyme. In the experiments reported here, the apparent Km(CO2) at pH 8.5 increased from 6 muM CO2 at zero time to 78 muM CO2 at 10 min. The corresponding bicarbonate Km values ar 1;3 and 17 mM, respectively, The interaction between bicarbonate and enzyme may be important in the light activation of photosynthetic CO2 fixation in vivo.  相似文献   

9.
Crystalline tobacco (Nicotiana tabacum L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) was prepared using a procedure which protected the enzyme from hydrolysis by endogenous proteases. Leaves were extracted in a buffered medium containing casein, leupeptin, and high concentrations of MgSO4 and NaHCO3. After filtration through ion-exchange resin to remove contaminants, the enzyme was concentrated by precipitation with polyethylene glycol and crystal formation was induced by low-salt dialysis. The crystalline enzyme had a measured specific activity of 1.7 mumol CO2 mg protein-1 min-1, and about 93% of the enzyme could be activated with Mg2+ and CO2. Crystalline enzyme prepared in the absence of casein exhibited an activity which was only one-third of this rate and only about 70% of the enzyme could be activated with Mg2+ and CO2. Casein-extracted enzyme was resolved into distinct bands corresponding to the large (55,000) and small (14,000) subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit of enzyme prepared according to the latter procedure was found to be composed of five different polypeptides of slightly decreasing molecular weight. Only about one-third of the large subunits were of the 55,000 molecular weight type. No differences between the two preparations were observed in the Km (CO2) and apparent Km (ribulose bisphosphate).  相似文献   

10.
The activation properties of the form I and form II ribulose 1,5-bisphosphate carboxylases from Rhodopseudomonas sphaeroides were examined. Both enzymes have a requirement of Mg2+ for optimal activity. Mn2+, Ni2+, and Co2+ can also support activity of the form I enzyme, whereas only Mn2+ can substitute for Mg2+ with the form II enzyme. The effect of different preincubations on the carboxylase reaction was also examined. Both enzymes exhibited a lag when preincubated with other than Mg2+ and CO2 before assay, but the lag was much more pronounced and the rate of the reaction was slower with the form I enzyme under these conditions. Activation of the form I carboxylase By Mg2+ and CO2 occurred more rapidly than that of the form II enzyme. The results obtained with the two distinct forms of carboxylase from R. sphaeroides, as well as studies with the spinach and Rhodospirillum rubrum enzymes, thus indicate that the presence of the small subunit affects the rate of activation by Mg2+ and CO2 as well as the rate of reactivation of ribulose bisphosphate-inactivated enzyme.  相似文献   

11.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

12.
Lilley RM  Walker DA 《Plant physiology》1975,55(6):1087-1092
The relationship between rate of photosynthesis and CO(2) concentration has been reinvestigated using isolated spinach (Spinacia oleracea) chloroplasts. The apparently low CO(2) concentration required for half-maximal photosynthesis is shown to result partly from a ceiling imposed by electron transport. In double reciprocal plots of rate against CO(2) concentration, this ceiling results in departures from linearity at high CO(2) concentrations. If these rate limitations are disregarded in extrapolation the "true" CO(2) concentration required for half maximal carboxylation by intact chloroplasts is approximately 46 mum (CO(2)).When assayed under comparable conditions, ribulose bisphosphate carboxylase from these chloroplasts also shows an apparent Km (CO(2)) of approximately 46 mum, suggesting that its characteristics are not modified by extraction. An improved assay for ribulose bisphosphate carboxylase yielded rates of carboxylation considerably higher than those previously reported, the highest maximal velocities recorded approaching 1000 mumoles CO(2) fixed mg(-1) chlorophyll hr(-1) at 20 C. With such Km and V(max), values the carboxylase would be able to achieve, at concentrations of CO(2) less than atmospheric, rates of CO(2) fixation equal to those displayed by the parent tissue or by the average plant under favorable conditions in its natural environment.  相似文献   

13.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

14.
Photosynthetic carbon fixation is regulated in the chloroplast by the amount of ribulose 1,5-bisphosphate carboxylase which is activated. The activated carboxylase was preserved in detached leaves (barley, maize, soybean, spinach, wheat) for 90 min when stored on ice. With leaf extracts stored at 2°C, the amount of activated enzyme, representing that originally in the leaf, as well as the fully activated enzyme, formed by incubation of leaf extracts with Mg2+ and bicarbonate, both slowly declined in activity. However, for each activity this decline was proportional such that the ratio (percent activation) appeared constant. No change was observed in activation of the enzyme during the brief time of leaf homogenization. Optimal conditions (Mg2+, incubation time) for measurement of leaf activation of ribulose bisphosphate carboxylase vary depending on the plant.  相似文献   

15.
Pyruvate is a minor product of the reaction catalyzed by ribulosebisphosphate carboxylase/oxygenase from spinach leaves. Labeled pyruvate was detected, in addition to the major labeled product, 3-phosphoglycerate, when 14CO2 was the substrate. Pyruvate production was also measured spectrophotometrically in the presence of lactate dehydrogenase and NADH. The Km for CO2 of the pyruvate-producing activity was 12.5 microM, similar to the CO2 affinity of the 3-phosphoglycerate-producing activity. No pyruvate was detected by the coupled assay when ribulose 1,5-bisphosphate was replaced by 3-phosphoglycerate or when the carboxylase was inhibited by the reaction-intermediate analog, 2'-carboxyarabinitol 1,5-bisphosphate. Therefore, pyruvate was not being produced from 3-phosphoglycerate by contaminant enzymes. The ratio of pyruvate produced to ribulose bisphosphate consumed at 25 degrees C was 0.7%, and this ratio was not altered by varying pH or CO2 concentration or by substituting Mn2+ for Mg2+ as the catalytically essential metal. The ratio increased with increasing temperature. Ribulose-bisphosphate carboxylases from the cyanobacterium Synechococcus PCC 6301 and the bacterium Rhodospirillum rubrum also catalyzed pyruvate formation and to the same extent as the spinach enzyme. When the reaction was carried out in 2H2O, the spinach carboxylase increased the proportion of its product partitioned to pyruvate to 2.2%. These observations provide evidence that the C-2 carbanion form of 3-phosphoglycerate is an intermediate in the catalytic sequence of ribulose-bisphosphate carboxylase. Pyruvate is formed by beta elimination of a phosphate ion from a small portion of this intermediate.  相似文献   

16.
The complexation of ribulosebiphosphate carboxylase with CO2, Mg2+, and carboxyarabinitol bisphosphate (CABP) to produce the quaternary enzyme-carbamate-Mg2+-CABP complex closely mimics the formation of the catalytically competent enzyme-carbamate-Mg2+-3-keto-CABP form during enzymatic catalysis. Quaternary complexes were prepared with various metals (Mg2+, Cd2+, Mn2+, Co2+, and Ni2+) and with specifically 13C-enriched ligands. 31P and 13C NMR studies of these complexes demonstrate that the activator CO2 site (carbamate site), the metal binding site, and the substrate binding site are contiguous. It follows that both the carboxylase and oxygenase activities of this bifunctional enzyme are influenced by the structures of the catalytic and activation sites.  相似文献   

17.
1. On subcellular fractionation of rat brain homogenate, polyphosphoinositide phosphomonoesterase activity was greater in the cytosol than the membranous fractions. 2. The enzyme was purified from the cytosol by column chromatography on DEAE-cellulose, calcium phosphate gel and Sephadex G-100. 3. The final preparation of the enzyme showed a 430-fold purification over the whole homogenate and appeared to be homogeneous since it gave a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on isoelectric focusing. The enzyme has a relatively low molecular weight and an isoelectric point of 6.8. 4. The phosphatase showed a high affinity for triphosphoinositide. Without added Mg2+, the Km was 25 muM and V was 33 mumol Pi released/min/mg protein. 5. The enzyme hydrolysed diphosphoinositide at a slower rate than triphosphoinositide. In the presence of 10 mM Mg2+, the Km values for triphosphoinositide and diphosphoinositide were 5 muM and 25 muM respectively and V was the same for each substrate. 6. Both Mg2+ and Ca2+ activated the enzyme. While Ca2+ produced maximum activation at 100 muM, a much higher concentration of Mg2+ (10 mM) was required to elicit comparable activation. The enzyme did not show an absolute requirement for Mg2+ or Ca2+ as it exhibited low activity in the presence of 0.5 mM EDTA or EGTA. 7. The phosphatase showed maximum activity between 7.4 and 7.6. A drop in pH to 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity. 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity.  相似文献   

18.
The small subunit (B) of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase from Aphanothece halophytica is absolutely required for the catalysis, but depletion of subunit B does not significantly affect the formation of the quaternary complex-[enzyme.activator CO2.Mg.carboxyarabinitol bisphosphate] in the catalytic core. The inhibition of RuBP carboxylase activity by the reaction of the epsilon-amino group of a lysine in the RuBP-binding site with pyridoxal 5-P is the same whether subunit B is added to the catalytic core before or after the inactivating reaction. The function of subunit B is not related to the substrate binding.  相似文献   

19.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

20.
Crystallographic studies of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum suggest that active-site Asn111 interacts with Mg2+ and/or substrate (Lundqvist, T., and Schneider, G. (1991) J. Biol. Chem. 266, 12604-12611). To examine possible catalytic roles of Asn111, we have used site-directed mutagenesis to replace it with a glutaminyl, aspartyl, seryl, or lysyl residue. Although the mutant proteins are devoid of detectable carboxylase activity, their ability to form a quaternary complex comprised of CO2, Mg2+, and a reaction-intermediate analogue is indicative of competence in activation chemistry and substrate binding. The mutant proteins retain enolization activity, as measured by exchange of the C3 proton of ribulose bisphosphate with solvent, thereby demonstrating a preferential role of Asn111 in some later step of overall catalysis. The active sites of this homodimeric enzyme are formed by interactive domains from adjacent subunits (Larimer, F. W., Lee, E. H., Mural, R. J., Soper, T. S., and Hartman, F. C. (1987) J. Biol. Chem. 262, 15327-15329). Crystallography assigns Asn111 to the amino-terminal domain of the active site (Knight, S., Anderson, I., and Br?ndén, C.-I. (1990) J. Mol. Biol. 215, 113-160). The observed formation of enzymatically active heterodimers by the in vivo hybridization of an inactive position-111 mutant with inactive carboxyl-terminal domain mutants is consistent with this assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号