首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There are two basic designs of the aquatic feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems. Larval salamanders and most fishes posses a unidirectional flow design in which water drawn into the mouth with the prey passes over the gills and exits posteriorly. Metamorphosed salamanders and all other aquatic vertebrates possess a bidirectional system in which water flows into and out of the mouth during a single feeding cycle. We investigated the functional consequences of these two feeding designs in larval and metamorphosed tiger salamanders ( Ambystoma tigrinum ) feeding in the water. Buccal cavity pressures were measured during feeding and 11 variables measured from the pressure traces. Significant differences were found between the larval and metamorphosed salamanders in eight variables. Larval salamanders generate significantly greater negative pressures than do metamorphosed individuals and a principal components analysis of the 11 pressure variables completely separates larval from metamorphosed salamanders. Larval individuals are significantly better at capturing elusive prey than are metamorphosed salamanders, apparently because of changes in the structure of the feeding mechanism and the concomitant functional modifications.  相似文献   

2.
Most previous research on metamorphosis of the musculoskeletal system in vertebrates has focused on the transformation of the skeleton. In this paper we focus on the transformation of the muscles of the head during metamorphosis in tiger salamanders ( Ambystoma tigrinum ) in order (1) to provide new data on changes in myology during ontogeny, and (2) to aid in interpreting previous data on the metamorphosis of function in the head of salamanders.
The physiological cross-sectional area of nine head muscles was calculated by measuring fibre angles, fibre lengths, and muscle mass in two samples of tiger salamanders obtained just before and just after metamorphosis. The major mouth-opening muscles (rectus cervicis and depressor mandibulae) exhibit a significant decrease in estimated maximum tetanic tension (MTT) across metamorphosis of about 36%. The jaw-closing muscles (adductor mandibulae internus and externus) and the head-lifting muscles (epaxials) also decrease in MTT but not significantly. The muscles associated with tongue projection during feeding on land (the subarcualis rectus I, geniohyoideus, interhyoideus and intermandibularis) all show a slight increase in MTT at metamorphosis.
Metamorphic transformation of feeding behaviour in Ambystoma tigrinum involves changes in performance, the design of skeletal elements, changes in muscle force-generating capability, and changes in hydrodynamic design from unidirectional flow in larvae to bidirectional flow during aquatic feeding after metamorphosis. Although muscle activity patterns during aquatic feeding do not change across metamorphosis, tongue-based terrestrial feeding involves a suite of novel muscle activity patterns, morphological characters acquired at metamorphosis, and a metamorphic increase in the masses of muscles important in tongue projection.  相似文献   

3.
4.
The orientation of the fibers in the dermis of the tiger salamander, Ambystoma tigrinum, undergoes a dramatic repatterning at metamorphosis. The pre-metamorphic, larval dermis is a tight layer composed of crossed fibers that wind helically around the trunk. This condition is retained by neotenic adults which do not undergo metamorphosis. In contrast, the neotenic adults which do not undergo metamorphosis. In contrast, the metamorphosed adult dermis consists of a superficial, loose network of fibers invested with large multicellular glands--the stratum spongiosum--and a deeper tight layer of fibers--the stratum densum. However, unlike the crossed fibers of the pre-metamorphic dermis, there is no preferred orientation to the fibers in either layer of the post-metamorphic dermis. In order to evaluate whether these two distinctly different fiber patterns are constructed from biochemically similar fibers, the collagen types present in the pre- and post-metamorphic dermis were determined using SDS-polyacrylamide gel electrophoresis. Type I collagen is the predominant collagen of the dermis and the same major collagen types are present for all individuals, whether pre- or post-metamorphic. Thus, the major types of collagen that compose the dermal fibers do not change during metamorphic repatterning of the dermis.  相似文献   

5.
Developmental relationships among characters are expected to bias patterns of morphological variation at the population level. Studies of character development thus can provide insights into processes of adaptation and the evolutionary diversification of morphologies. Here I use experimental manipulations to test whether larval and adult pigment patterns are coupled across metamorphosis in the tiger salamander, Ambystoma tigrinum tigrinum (Ambystomatidae). Previous investigations showed that the early larval pigment pattern depends on interactions between pigment cells and the lateral line sensory system. In contrast, the results of this study demonstrate that the major features of the adult pigment pattern develop largely independently of both the early larval pattern and the lateral lines. These results suggest that ontogenetic changes that occur across metamorphosis decouple larval and adult pigment patterns and could thereby facilitate independent evolutionary modifications to the patterns during different stages of the life cycle. J. Morphol. 237:53–67, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the “hour‐glass” model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well‐defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within‐group variance and the largest disparity level (between‐group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.  相似文献   

7.
The Arizona tiger salamander, Ambystoma tigrinum nebulosum, is a developmentally polymorphic species. Some individuals become sexually mature while retaining some larval traits (paedomorphs), while other individuals mature as metamorphosed salamanders. In this study, relative enzyme activities of the products of two duplicate loci in each of three enzyme systems (aconitase, malate dehydrogenase, and isocitrate dehydrogenase) were measured in paedomorphs and in paedomorphs forced to metamorphose by treatment with thyroxine. We found that thyroxine and laboratory conditions affect enzyme activities of four of the six enzymes examined and that activities of products of duplicate loci are altered to different degrees.  相似文献   

8.
While ontogenetic analyses of skull development have contributed to our understanding of phylogenetic patterns in vertebrates, there are few studies of taxa that undergo a relatively discrete and rapid change in morphology during development (metamorphosis). Morphological changes occurring in the head at metamorphosis in tiger salamanders (Ambystoma tigrinum) were quantified by a morphometric analysis of cranial osteology and myology to document patterns of change during metamorphosis. We employed a cross-sectional analysis using a sample of larvae just prior to metamorphosis and a sample of transformed individuals just after metamorphosis, as well as larvae undergoing metamorphosis. There were no differences in external size of the head among the larval and transformed samples. The hyobranchial apparatus showed many dramatic changes at metamorphosis, including shortening of ceratobranchial 1 and the basibranchial. The subarcualis rectus muscle increased greatly in length at metamorphosis, as did hypobranchial length and internasal distance. A truss analysis of dorsal skull shape showed that at metamorphosis the snout becomes wider, the maxillary and squamosal triangles rotate posteromedially, and the neurocranium shortens (while maintaining its width), resulting in an overall decrease in skull length at metamorphosis. These morphometric differences are interpreted in light of recent data on the functional morphology of feeding in salamanders. Morphological reorganization of the hyobranchial apparatus and shape changes in the skull are related to the acquisition of a novel terrestrial feeding mode (tongue projection) at metamorphosis. Metamorphic changes (both internal and external) that can be used to judge metamorphic condition are discussed.  相似文献   

9.
The newt is an indispensable model animal, of particular utility for regeneration studies. Recently, a high-throughput transgenic protocol was established for the Japanese common newt, Cynops pyrrhogaster. For studies of regeneration, metamorphosed animals may be favorable; however, for this species, there is no efficient protocol for maintaining juveniles after metamorphosis in the laboratory. In these animals, survival drops drastically after metamorphosis as their foraging behaviour changes to adapt to a terrestrial habitat, making feeding in the laboratory with live or moving foods more difficult. To elevate the efficiency of laboratory rearing of this species, we examined metamorphosis inhibition (Ml) protocols to bypass the period (four months to two years after hatching) in which the animal feeds exclusively on moving foods. We found that approximately 30% of animals survived after 2-year Ml, and that the survivors continuously grew, only with static food while maintaining their larval form and foraging behaviour in 0.02% thiourea (TU) aqueous solution, then metamorphosed when returned to a standard rearing solution even after 2-year-MI. The morphology and foraging behavior (feeding on static foods in water) of these metamorphosed newts resembled that of normally developed adult newts. Furthermore, they were able to fully regenerate amputated limbs, suggesting regenerative capacity is preserved in these animals. Thus, controlling metamorphosis with TU allows newts to be reared with the same static food under aqueous conditions, providing an alternative rearing protocol that offers the advantage of bypassing the critical period and obtaining animals that have grown sufficiently for use in regeneration studies.  相似文献   

10.
In many organisms metamorphosis allows for an ecologically important habitat-shift from water to land. However, in some salamanders an adaptive life cycle mode has evolved that is characterized by metamorphic failure (paedomorphosis); these species remain in the aquatic habitat throughout the life cycle. Perhaps the most famous example of metamorphic failure is the Mexican axolotl (Ambystoma mexicanum), which has become a focal species for developmental biology since it was introduced into laboratory culture in the 1800s. Our previous genetic linkage mapping analysis, using an interspecific crossing design, demonstrated that a major gene effect underlies the expression of metamorphic failure in laboratory stocks of the Mexican axolotl. Here, we repeated this experiment using A. mexicanum that were sampled directly from their natural habitat at Lake Xochimilco, Mexico. We found no significant association between the major gene and metamorphic failure when wild-caught axolotls were used in the experimental design, although there is evidence of a smaller genetic effect. Thus, there appears to be genetic variation among Mexican axolotls (and possibly A. tigrinum tigrinum) at loci that contribute to metamorphic failure. This result suggests a role for more than one mutation and possibly artificial selection in the evolution of the major gene effect in the laboratory Mexican axolotl.  相似文献   

11.
Scott DE  Casey ED  Donovan MF  Lynch TK 《Oecologia》2007,153(3):521-532
In organisms that have complex life cycles, factors in the larval environment may affect both larval and adult traits. For amphibians, the postmetamorphic transition from the aquatic environment to terrestrial habitat may be a period of high juvenile mortality. We hypothesized that lipid stores at metamorphosis may affect an animal’s success during this critical transition period. We examined variation in total lipid levels among years and sites in recently metamorphosed individuals of two pond-breeding salamander species, the marbled salamander (Ambystoma opacum) and the mole salamander (A. talpoideum), with limited data for one anuran species (southern leopard frog, Rana sphenocephala). Lipid levels were allometrically related to body size and ranged from 1.9 to 23.8% of body dry mass. The two salamander species differed in lipid allocation patterns, with A. opacum apportioning a higher percentage of total lipid reserves into fat bodies than A. talpoideum. Species differences in lipid allocation patterns may primarily reflect that large metamorphs will mature as one-year olds, and, regardless of species, will alter lipid compartmentalization accordingly. We used mark–recapture data obtained at drift fences encircling breeding ponds for 13 A. opacum cohorts to estimate the proportion of postmetamorphic individuals that survived to breed (age 1–4) and the mean age at first reproduction. Regression models indicated that size-corrected lipid level at metamorphosis (i.e., lipid residuals), and to a lesser extent rainfall following metamorphosis, was positively related to adult survival. Snout-vent length at metamorphosis was negatively related to age at first reproduction. We suggest that lipid stores at metamorphosis are vital to juvenile survival in the months following the transition from aquatic to terrestrial habitat, and that a trade-off shaped by postmetamorphic selection in the terrestrial habitat exists between allocation to energy stores versus structural growth in the larval environment.  相似文献   

12.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

13.
Pacific giant salamanders (Dicamptodon) rank among the largest terrestrial caudates. Their ontogeny produces two distinct morphs—larval‐neotenic and metamorphosed—which differ in many morphological traits. We identified changes that are initiated by metamorphosis (distinguishing transformed from neotenic specimens) and also recognized age‐related changes occurring irrespective of transformation. During metamorphosis, specimens remodel the palate, rearrange the vomerine dentition, expand the maxilla, broaden the cheek, foreshorten the posterior skull table and develop specific serrated suture patterns in the dermal bones. Instead, large larvae grow a robust pterygoid sutured with a fully ossified trapezoidal vomer and a short maxilla. Small larvae are readily distinguished by tooth count, morphology and arrangement from more advanced larvae. Age‐related features, irrespective of metamorphosis, include pedicellate teeth, morphological differentiation of parasphenoid, enlargement of the orbitosphenoid, distal expansion of columella, and loss of coronoid teeth.  相似文献   

14.
Inbreeding may lead to morphological malformations in a wide variety of taxa. We used genetic markers to evaluate whether malformed urodeles were more inbred and/or had less genetic diversity than normal salamanders. We captured 687 adult and 1259 larval tiger salamanders (Ambystoma tigrinum tigrinum), assessed each individual for gross malformations, and surveyed genetic variation among malformed and normal individuals using both cytoplasmic and nuclear markers. The most common malformations in both adults and larvae were brachydactyly, ectrodactyly and polyphalangy. The overall frequency of adults with malformations was 0.078 compared to 0.081 in larval samples. Genetic diversity was high in both normal and malformed salamanders, and there were no significant difference in measures of inbreeding (f and F), allele frequencies, mean individual heterozygosity or mean internal relatedness. Environmental contaminants or other extrinsic factors may lead to genome alternations that ultimately cause malformations, but our data indicate that inbreeding is not a causal mechanism.  相似文献   

15.
Ambystoma tigrinum virus (ATV) is a lethal virus originally isolated from Sonora tiger salamanders Ambystoma tigrinum stebbinsi in the San Rafael Valley in southern Arizona. USA. ATV is implicated in several salamander epizootics. We attempted to transmit ATV experimentally to fish and amphibians by injection, water bath exposure, or feeding to test whether ATV can cause clinical signs of infection or be recovered from exposed individuals that do not show clinical signs. Cell culture and polymerase chain reaction of the viral major capsid protein gene were used for viral detection. Salamanders and newts became infected with ATV and the virus was recovered from these animals, but virus could not be recovered from any of the frogs or fish tested. These results suggest that ATV may only infect urodeles and that fish and frogs may not be susceptible to ATV infection.  相似文献   

16.
Previous work of others and ours has shown that corticotropin-releasing hormone (CRH) is a positive stimulus for thyroid and interrenal hormone secretion in amphibian larvae and that activation of CRH neurons may mediate environmental effects on the timing of metamorphosis. These studies have investigated CRH actions in anurans (frogs and toads), whereas there is currently no information regarding the actions of CRH on metamorphosis of urodeles (salamanders and newts). We tested the hypothesis that CRH can accelerate metamorphosis of tiger salamander (Ambystoma tigrinum) larvae. We injected tiger salamander larvae with ovine CRH (oCRH; 1 microg/day; i.p.) and monitored effects on metamorphosis by measuring the rate of gill resorption. oCRH-injected larvae completed metamorphosis earlier than saline-injected larvae. There was no significant difference between uninjected and saline-injected larvae. Mean time to reach 50% reduction in initial gill length was 6.9 days for oCRH-injected animals, 11.9 days for saline-injected animals, and 14.1 days for uninjected controls. At the conclusion of the experiment (day 15), all oCRH-injected animals had completed metamorphosis, whereas by day 15, only 50% of saline-injected animals and 33% of uninjected animals had metamorphosed. Our results show that exogenous oCRH can accelerate metamorphosis in urodele larvae as it does in anurans. These findings suggest that the neuroendocrine mechanisms controlling metamorphosis are evolutionarily conserved across amphibian taxa.  相似文献   

17.
How do paedomorphic newts cope with lake drying?   总被引:2,自引:0,他引:2  
Mathieu Denoël 《Ecography》2003,26(4):405-410
Paedomorphosis, in which adult individuals retain larval traits, is widespread in newts and salamanders. Most evolutionary models predict the maintenance of this life-history trait in favourable aquatic habitats surrounded by hostile terrestrial environments. Nevertheless, numerous ponds inhabited by paedomorphic individuals are unpredictable and temporary. In an experimental framework, I showed that paedomorphic newts were able to metamorphose and thus survive in the absence of water. However, the mere decrease of water level or the life space do not seem to induce metamorphosis in paedomorphs. On the contrary, drying up induces almost all individuals to move on land and after that to colonize other aquatic sites located nearby. Such terrestrial migrations allow survival in drying conditions without metamorphosis as long as the distances of terrestrial migration are short. These results are consistent with the presence of paedomorphs in drying ponds and are in favor of classic optimality models predicting metamorphosis in unfavorable environments.  相似文献   

18.
A cross-sectional analysis using different ontogenetic stages (larvae, juveniles, paedotypic, and metamorphic adults) of the smooth newt, Triturus vulgaris, and the alpine newt, T.alpestris, revealed a broad spectrum of perennibranchiation influences on cranial ontogeny in European newts, more pronounced than previously thought. These influences included marked variation in ossification levels, pronounced morphometric variability of many cranial elements, and considerable skull shape changes in the transition from larvae to the adult stage. In comparison with metamorphosed individuals, paedotypic newts had a higher level of variability in both individual cranial traits and cranial shape changes. Sexual size difference of the skull traits was mostly negligible, especially in comparison to the influence of paedogenesis. The main changes in cranial shape of the European newts occurred during metamorphosis. Cranial morphological organization in the majority of examined paedotypes corresponds to cranial organization at late larval stages prior to metamorphosis or at the onset of metamorphosis.  相似文献   

19.
The subarcualis rectus I muscle (SAR) in the feeding mechanism of four tiger salamanders (Ambystoma tigrinum) was removed early in ontogeny and these individuals were allowed to complete metamorphosis. This procedure resulted in postmetamorphic tiger salamanders which differed from control individuals in the size (and thus force generating capacity) of the SAR muscle. The experimental manipulation of muscle ontogeny allowed a test of previous hypotheses of SAR function in postmetamorphic individuals. Multivariate analysis of variance for kinematic variables measured from high-speed video records of feeding revealed that experimentally modified tiger salamanders did not protract the hyobranchial apparatus or project the tongue from the mouth during feeding. Removal of the SAR muscle resulted in significantly reduced hyobranchial elevation in the buccal cavity and reduced maximum tongue projection distance.  相似文献   

20.
Voss SR  Smith JJ 《Genetics》2005,170(1):275-281
The evolution of alternate modes of development may occur through genetic changes in metamorphic timing. This hypothesis was examined by crossing salamanders that express alternate developmental modes: metamorphosis vs. paedomorphosis. Three strains were used in the crossing design: Ambystoma tigrinum tigrinum (Att; metamorph), wild-caught A. mexicanum (Am; paedomorph), and laboratory Am (paedomorph). Att/Am hybrids were created for each Am strain and then backcrossed to their respective Am line. Previous studies have shown that a dominant allele from Att (met(Att)) and a recessive allele from lab Am (met(lab)) results in metamorphosis in Att/Am hybrids, and met(Att)/met(lab) and met(lab)/met(lab) backcross genotypes are strongly associated with metamorphosis and paedomorphosis, respectively. We typed a molecular marker (contig325) linked to met and found that met(Att)/met(lab) and met(Att)/met(wild) were associated with metamorphosis in 99% of the cases examined. However, the frequency of paedomorphosis was 4.5 times higher for met(lab)/met(lab) than for met(wild)/met(wild). We also found that met(Att)/met(wild) and met(wild)/met(wild) genotypes discriminated distributions of early and late metamorphosing individuals. Two forms of phenotypic variation are contributed by met: continuous variation of metamorphic age and expression of discrete, alternate morphs. We suggest that the evolution of paedomorphosis is associated with genetic changes that delay metamorphic timing in biphasic life cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号