首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Midkine (MK) is a heparin binding multifunctional protein that promotes cell survival and cell migration. MK was found to bind to 37-kDa laminin binding protein precursor (LBP), a precursor of 67-kDa laminin receptor, with K(d) of 1.1 nM between MK and LBP-glutathione-S-transferase fusion protein. The binding was inhibited by laminin, anti-LBP, amyloid beta-peptide, and heparin; the latter two are known to bind to MK. In CMT-93 mouse rectal carcinoma cells, LBP was mostly located in the cytoplasm as revealed by immunostaining with anti-LBP antibody. That a portion of LBP or 67-kDa laminin receptor was located at the surface of these cells was verified by inhibition of cell attachment to laminin-coated dishes by anti-LBP antibody. When MK was added to culture medium of these cells, a part of LBP migrated to the nucleus. The movement occurred concomitantly with nuclear transport of biotin-labeled MK. These findings suggested that the binding of MK to LBP caused nuclear translocation of the molecular complex.  相似文献   

2.
In the course of trying to understand the pathogenesis of leishmaniasis in relation to extracellular matrix (ECM) elements, laminin, a major ECM protein, has been found to bind saturably and with high affinity to a 67-kDa cell surface protein of Leishmania donovani. This interaction involves a single class of binding sites, which are ionic in nature, conformation-dependent and possibly involves sulfhydryls. Binding activity was significantly enhanced by Zn2+, an effect possibly mediated through Cys-rich zinc finger-like sequences on laminin. Inhibition studies with monoclonals against polypeptide chains and specific peptides with adhesive properties revealed that the binding site was localized in one of the nested zinc finger consensus sequences of B1 chain containing the specific pentapeptide sequence, YIGSR. Furthermore, incubation of L. donovani promastigotes with C(YIGSR)3-NH2 peptide amide or antibody directed against the 67-kDa laminin-binding protein (LBP) induced tyrosine phosphorylation of proteins with a molecular mass ranging from 115 to 130 kDa. These studies suggest a role for LBP in the interaction of parasites with ECM elements, which may mediate one or more downstream signalling events necessary for establishment of infection.  相似文献   

3.
A search for genes expressed in activated T cells revealed that the nonintegrin, 67-kDa laminin binding protein (p67 LBP) is expressed on the surface of a subset (10-15%) of activated peripheral blood T cells. Surface p67 LBP expression is detectable by FACS using the anti-p67 LBP mAb, MLuC5, within 6 h of T cell activation with phorbol dibutyrate and ionomycin, peaks 18-36 h postactivation, and persists for 7-10 days. The subset of T cells expressing p67 LBP is composed of mature, single-positive cells (85% CD4+8-, 15% CD4-8+) of memory cell phenotype (100% CD45 RO+/CD45 RA-). The p67 LBP+ T cells also express the integrin alpha6 chain (CD49f), which is known to associate with p67 LBP on tumor cells. In addition, the p67 LBP+ T cells express the integrin beta1, which associates with alpha6 in the laminin-specific integrin receptor very late activation Ag (VLA)-6 (alpha6beta1). Expression of an exogenous cDNA encoding the 37-kDa LBP precursor (p37 LBPP) confers p67 LBP surface expression on a p67 LBP-negative Jurkat T cell line (B2.7). Expression of p67 LBP induces B2.7 transfectants to adhere to laminin, but avid laminin binding depends on coexpression of VLA-6. Taken together, these data indicate that p67 LBP is an activation-induced surface structure on memory T cells that, together with VLA-6, mediates cellular adherence to laminin.  相似文献   

4.
A major laminin-binding protein (LBP), distinct from previously described LBPs, has been isolated from chick and rat skeletal muscle (Mr 56,000 and 66,000, respectively). The purified LBPs from the two species were shown to be related antigenically and to have similar NH2-terminal amino acid sequences and total amino acid compositions. Protein blots using laminin and laminin fragments provided evidence that this LBP interacts with the major heparin-binding domain, E3, of laminin. Studies on the association of this LBP with muscle membrane fractions and reconstituted lipid vesicles indicate that this protein can interact with lipid bilayers and has properties of a peripheral, not an integral membrane protein. These properties are consistent with its amino acid sequence, determined from cDNAs (Clegg et al., 1988). Examination by light and electron microscopy of the LBP antigen distribution in skeletal muscle indicated that the protein is localized primarily extracellularly, near the extracellular matrix and myotube plasmalemma. While a form of this LBP has been identified in heart muscle, it is present at low or undetectable levels in other tissues examined by immunocytochemistry indicating that it is probably a muscle-specific protein. As this protein is localized extracellularly and can bind to both membranes and laminin, it may mediate myotube interactions with the extracellular matrix.  相似文献   

5.
Several laminin receptors have been identified, originally a high-affinity 67-kDa laminin binding protein ('LBP-67'), and later galactosyltransferase and the low-affinity but functionally potent integrin receptors. Attempts at obtaining cDNA for LBP-67, although unsuccessful, have given rise to a full-length cDNA coding for an interesting 32-kDa protein, tentatively referred to as '32-kDa LBP', whose relationship to LBP-67 is unclear. Since no information is available on the in vivo expression of 32-kDa LBP mRNA nor of the three laminin chains during CNS development, appropriate 35S-antisense and -sense RNA probes were applied to developing mouse cerebral wall at embryonic day (E)10-16, birth and 1-3 weeks after birth. Expression was examined using Northern blot analysis and in situ hybridization. The 32-kDa LBP mRNA was found to be elevated during the embryonic and perinatal period, and then rapidly declined. At the cellular level, 32-kDa LBP mRNA was distributed throughout the embryonic cerebral wall and became concentrated during the perinatal period in the proliferative ventricular zone and in the cortical plate. By comparison, laminin B1, B2, and A chain mRNA expression was relatively low at all times examined, in keeping with the punctate distribution of laminin antigenicity previously observed by others in developing brain parenchyma. Whereas the functional characterization of 32-kDa LBP and the nature of its laminin and proposed nonlaminin ligands is incomplete, the elevated and unique distribution of 32-kDa LBP mRNA raises interesting questions of the role of 32-kDa LBP mRNA in CNS development.  相似文献   

6.
L E Grosso  P W Park  R P Mecham 《Biochemistry》1991,30(13):3346-3350
The 67-kDa elastin binding protein shares many immunological and structural properties with the high-affinity 67-kDa tumor cell laminin receptor. Taking advantage of these similarities, we have screened a bovine cDNA library with a partial cDNA probe for the laminin receptor and have isolated and characterized a cDNA clone of 1038 bp that hybridizes to a single-size mRNA of 1.3 kb. The clone encodes a protein with a predicted molecular weight of 33K that lacks an N-terminal leader sequence, shows no posttranslational processing when translated in vitro in the presence of microsomes, and does not bind to elastin affinity columns. Although the bovine clone is nearly identical with clones encoding human and mouse proteins proported to be 67-kDa laminin receptor, physical and functional characteristics of the encoded protein suggest that it is a cytoplasmic protein that does not bind elastin. This finding calls into question the earlier conclusion that the clone encodes the 67-kDa receptor.  相似文献   

7.
8.
The role that interaction with laminin may play in Leishmania donovani infection was investigated. Binding of (125)I-radiolabeled laminin, in a liquid-phase assay, by the parasite was rapid, saturable, specific, reversible, and of high affinity. Using a Western blotting procedure, a 67 kDa laminin-binding protein (LBP) was identified from the membrane of both the promastigote and amastigote forms of L. donovani. Subsequently, the protein was purified by affinity chromatography. Immunofluorescence with a polyclonal antibody against LBP as well as flow cytometric analysis demonstrated its presence at the parasite surface. After stimulation with phorbol-12-myristate-13-acetate (PMA), U937 cells exhibited the ability to adhere to laminin and LBP specifically inhibited this adhesion. The reduced parasite adhesion after tunicamycin treatment suggested the importance of sugar residues in cell adhesion. Although co-administration of either laminin or LBP or anti LBP antibody reduced parasite virulence, resulting in a lower level of infection in the BALB/c mouse model, an in vitro macrophage culture-enhanced level of infection was observed in the case of laminin-coated parasites. The results collectively suggest a role for LBP in the interaction of the parasite with extracellular matrix elements, which may constitute a basis for the homing of the parasite to its physiological address.  相似文献   

9.
Genetic imbalances in preleukemic thymuses   总被引:4,自引:0,他引:4  
To understand the molecular mechanisms involved in preleukemia, the suppression subtractive hybridization method was used in a murine radiation-induced thymic lymphoma model. Seventeen mRNAs overexpressed in preleukemic thymuses were identified: mouse laminin binding protein (p40/37LBP), E25 protein, Rattus norvegicus clone BB.1.4.1, profilin, poly(A) binding protein (PABP), mouse high mobility group protein 1, topoisomerase I, clusterin, proteasome RC1 subunit, rat prostatein C3 and C1 subunits; two ESTs and four unknown genes. The overexpression of PABP, clusterin, profilin, and the p40/37LBP mRNAs was confirmed in preleukemic thymuses and can be related to some cellular events observed during the preleukemic period, i.e., alterations of cell cycle and apoptosis properties. The p40/37LBP and 67-kDa laminin receptor proteins were upregulated during the preleukemic period. The data suggest that additional studies on p40/37LBP and 67-kDa laminin receptor regulation are required to evaluate their potential role in the lymphoma prevention by TNF-alpha and IFN-gamma.  相似文献   

10.
BACKGROUND: Peptide 11, a nine-amino acid sequence from the beta1 chain of laminin-1, has been reported to inhibit tumor cell invasion of basement membranes, and to reduce tumor lung colonization (Iwamoto et al.: Science 238:1132-1134, 1987; Landowski et al.: Clin Exp Metastasis 13:357-372, 1995). The peptide is a ligand for the 32/67-kDa laminin-binding protein (LBP); however, the mechanism by which the 67-kDa LBP promotes invasion is unknown. METHODS: We have synthesized a highly specific probe for the 67-kDa LBP by adding a biotinylated residue, and replacing the required tyrosine in peptide 11 with the photoactivatable bezophenone crosslinker, 4-benzoyl-L-phenylalanine. This probe was used to follow the distribution of the 67-kDa LBP by gel electrophoresis, fluorescence-activated cell scanning, and confocal microscopy techniques. RESULTS: A single crosslinked protein, consistent with the high molecular weight form of the LBP, was found on Western blots of membrane detergent extracts from cells treated with the ligand probe. A CHO cell line, manipulated to overexpress the laminin-specific alpha6beta1 integrin, exhibited increased invasiveness, and expressed more cell surface 67-kDa LBP. Membrane-associated 67-kDa LBP was found in the vicinity of focal adhesion plaques and also associated with the matrix substrate. Studies on conditioned medium indicated that the matrix-associated LBP derived from material that was shed from the cells, with more being shed from the more invasive CHO variants. CONCLUSIONS: These results demonstrate the utility of this novel probe in diverse experimental protocols, and suggest that shedding of the 67-kDa LBP may have a role in promoting tumor cell invasion.  相似文献   

11.
We report the identification of a 65-kDa laminin-binding protein (LBP) on the basal cell surface of embryonic corneal epithelium in chicken. The 65-kDa LBP was isolated by affinity chromatography with laminin-Sepharose. When reconstituted with lipid vesicles, it demonstrated specific binding for laminin. We produced monoclonal antibodies (MAbs) against 65-k Da LBP; these MAbs immunohistochemically localized to the basal epithelial cell surface. One MAb interfered with the binding of laminin to isolated epithelia and purified 65-k Da LBP. It appears that we have identified, at least in part, a cell-surface binding site for laminin. This site would provide the important link between the extracellular laminin and the intracellular cytoskeleton, and potentially the metabolic machinery of the corneal epithelial cell.  相似文献   

12.
The carbohydrate moieties present on laminin play a crucial role in the multiple biological activities of this basement membrane glycoprotein. We report the identification of a human laminin binding protein with an apparent molecular mass of 14 kDa on sodium dodecyl sulfate-polyacrylamide gels that was found, after purification and amino acid microsequencing, to be identical to the previously described 14-kDa galactoside binding soluble L-14 lectin. We have designated this human laminin binding protein as HLBP14. HLBP14 was purified from human melanoma cells in culture by laminin affinity chromatography and gel electroelution. We demonstrate that HLBP14 binds specifically to the poly-N-acetyllactosamine residues of murine laminin and does not bind to other glycoproteins that do not contain such structures, such as fibronectin. HLBP14 was eluted from a murine laminin column by lactose, N-acetyllactosamine, and galactose but not by other control saccharides, including glucose, fucose, mannose, and melibiose. It did not bind to laminin treated with endo-beta-galactosidase. Lactose also eluted HLBP14 off a human laminin affinity column, implying that human laminin also contains poly-N-acetyllactosamine residues. On immunoblots, polyclonal antibodies raised against HLBP14 recognized HLBP14 as well as 31- and 67-kDa molecules that are also laminin binding proteins, indicating that these proteins share common epitopes. L-14, a dimeric lactose binding lectin, is expressed in a wide variety of tissues. Although the expression of this molecule has been linked to a variety of biological events, the elucidation of its specific functions has been elusive. The observation that HLBP14, a human cancer cell laminin binding protein, is identical to L-14 strongly suggests that the functions attributed to this lectin could be mediated, at least in part, through its ability to interact with the poly-N-acetyllactosamine residues of laminin. HLBP14 could potentially play a role during tumor invasion and metastasis by modulating the interactions between cancer cells and laminin.  相似文献   

13.
Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.  相似文献   

14.
Neural cells in culture (NG-108, PC12, chick dorsal root ganglion, chick spinal cord, and rat astrocytes) bind laminin with an apparent Kd of congruent to 10(-9) M. Laminin affinity chromatography of chick brain membranes washed with 150 mM NaCl and eluted with 0.2 M glycine buffer, pH 3.5, yields a single protein with an apparent molecular mass of 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Isoelectric focusing and peptide mapping indicate that the 67-kDa protein is distinct from bovine serum albumin (68 kDa) but indistinguishable from high affinity laminin receptors isolated from skeletal muscle. After electroblotting onto nitrocellulose paper and probing with 125I-laminin, this putative laminin receptor binds laminin specifically (100 ng/ml). A second protein (congruent to 120-140 kDa) is also detected with 125I-laminin (100 ng/ml) in the laminin affinity-purified membrane proteins. Both 67- and congruent to 120-140-kDa proteins can be laminin affinity-purified from cultures enriched for neurons (greater than 90%) following metabolic labeling with [35S]methionine. Our data suggest that neural cells (dorsal root ganglion, central nervous system neurons, astrocytes, and several neural cell lines) have high affinity binding sites for laminin and that two membrane proteins, 67- and congruent to 120-140-kDa, are responsible at least in part for this binding.  相似文献   

15.
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pK(a) values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan.  相似文献   

16.
We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [(14)C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP.  相似文献   

17.
Rat DNA polymerase beta (beta-pol) is a 39-kDa protein organized in two tightly folded domains, 8-kDa N-terminal and 31-kDa C-terminal domains, connected by a short protease-sensitive region. The 8-kDa domain contributes template binding to the intact protein, and we now report that the 31-kDa C-terminal domain contributes catalytic activity. Our results show that this domain as a purified proteolytic fragment conducts DNA synthesis under appropriate conditions but the kcat is lower and primer extension properties are different from those of the intact enzyme. A proteolytic truncation of the 31-kDa catalytic domain fragment, to remove a 60-residue segment from the NH2-terminal end, results in nearly complete loss of activity, suggesting the importance of this segment. Overall, these results indicate that the domains of beta-pol have distinct functional roles, template binding and nucleotidyltransferase, respectively; yet, the intact protein is more active for each function than the isolated individual domain fragment.  相似文献   

18.
The ribosome-associated protein LBP/p40, which was originally named after "laminin binding protein precursor p40," is distributed on the cell surface as laminin binding protein p67 (LBP/p67), in the nucleus, and on 40S ribosomes. In a broad range of eukaryotes, the localization of LBP/p40 on the 40S ribosome is well conserved. Two yeast homologs of LBP/p40 are believed to be essential for cell viability and each gene product probably corresponds to the assembly and/or stability of the 40S ribosomal subunit. The precise role of LBP/p40 in translation, however, remains to be elucidated, especially in higher eukaryotes. In this report, we used a yeast two-hybrid screening method to isolate molecules associated with human LBP/p40 protein on ribosomes. We found that the 40S ribosomal protein S21 was tightly bound with LBP/p40 in this yeast two-hybrid system and in in vitro analysis. Further, we discovered that the association required a broad region of the LBP/p40 amino acid sequence, which corresponds to the highly conserved region of LBP/p40 homologs among eukaryotes.  相似文献   

19.
Madin-Darby canine kidney (MDCK) cells have been extensively used as a model for the study of epithelial polarization. The contacts between the cell and extra-cellular matrix (ECM) provide a signal for the polarization of apical membrane markers. In order to study the molecular basis of these contacts, MDCK cells extracts in Triton X-100 were affinity-purified on laminin, yielding polypeptides of 100-110 and 36 kDa, but only the second one could be enzymatically iodinated from the cell surface. This protein was also recognized by an antibody against the 37/67-kDa laminin/elastin family of proteins. Different polypeptides were purified by the same method on type I collagen. An antibody developed against the polypeptides purified on laminin recognized also a 67-kDa protein, blocked 125I-laminin binding to a population of high affinity (1.5 nM KD) binding sites and caused a significant decrease in cell attachment and spreading to laminin or endogenous ECM. This antibody did not interfere with MDCK cell attachment to fibronectin or collagen matrices, but still impaired cell spreading. An apical MDCK plasma membrane protein (184 kDa), fully polarized in untreated cells, was partially mispolarized after treatment with anti-36 kDa antibody. These results are consistent with a model of various ECM receptors operating together in these cells, and show an important role of a non-integrin 36-kDa laminin binding protein related to the 67-kDa laminin receptor family in cell attachment, spreading and polarization.  相似文献   

20.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号