首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Lung cancer is usually fatal once it becomes metastatic. However, in order to develop metastases, a tumor usually invades the basal membrane and enters the vascular or lymphatic system. In this study, a three-dimensional artificial membrane using collagen type I, one of the main components of basal membranes, was established in order to investigate tumor cell invasion. Lung cancer cell line CALU-1 was seeded on this artificial membrane and cell invasion was studied using the Fourier transform infrared (FTIR) imaging technique. This approach allowed identification of tumor cells invading the collagen type I membrane by means of their infrared spectra and images. The mapping images obtained with FTIR microspectroscopy were validated with standard histological section analysis. The FTIR image produced using a single wavenumber at 1080 cm(-1), corresponding to PO2- groups in DNA from cells, correlated well with the histological section, which clearly revealed a cell layer and invading cells within the membrane. Furthermore, the peaks corresponding to amide A, I, and II in the spectra of the invading cells shifted compared to the noninvading cells, which may relate to the changes in conformation and/or heterogeneity in the phenotype of the cells. The data presented in this study demonstrate that FTIR microspectroscopy can be a fast and reliable technique to assess tumor invasion in vitro.  相似文献   

2.
Summary EpH4 is a nontumorigenic cell line derived from spontaneously immortalized mouse mammary gland epithelial cells (Fialka et al., 1996). When grown in collagen gels, EpH4 cells give rise to different types of structures, e.g., solid cords or branching tubes. By removing and subsequently dissociating single three-dimensional colonies of defined morphology, we have isolated six clonal subpopulations of EpH4 cells which display distinct morphogenetic properties in collagen gel cultures. Thus, cells from the H1B clone form branching cords devoid of a central lumen, K3A3 cells from cords enclosing small multifocal lumina, and J3B1 cells form large cavitary structures containing a wide lumen. I3G2 cells form either cords or tubes, depending on the type of serum added to the culture medium. Finally, when grown in serum-free medium, Be1a cells form spherical cysts, whereas Be4a cells form long, extensively branched tubes. In additional assays of morphogenesis, i.e., cell sandwiching between two collagen gels or culture on a thick layer of Matrigel (a laminin-rich extracellular matrix), all clones form epithelial-cell-lined cavitary structures, except H1B cells which are unable to generate lumina under these conditions. The EpH4 sublines we have isolated provide an in vitro system for studying the mechanisms responsible for lumen formation and branching morphogenesis, as well as for identifying the factors which subvert these developmental processes during mammary carcinogenesis.  相似文献   

3.
Aspects of tumor-induced angiogenesis in vitro were examined using an assay involving collagen gel invasion by a surface monolayer of bovine endothelial cells under the influence of serum free conditioned medium produced by C6 cells, an experimentally derived rat glial tumor cell line. The effects of the polyanionic compound suramin, known to interfere with growth factor/cell signaling on this process were evaluated. Collagen gel invasion was quantified by adding C6 conditioned medium with or without various doses of suramin to monolayers of bovine aortic endothelial cells grown on type I collagen gels in transwell inserts. Cultures were monitored with phase-contrast microscopy. After various periods of incubation collagen gels were fixed, embedded in epoxy resin, and 1-μm thick sections were stained with toluidine blue. Additional cultures were used to evaluate the effects of C6 conditioned medium and suramin on endothelial cell proliferation, and on chemotaxis through 8-μm pores. C6 glioma cell conditioned medium induced large vessel endothelial cells to sprout into the underlying collagen matrix and subsequently from networks of capillary like tubes. Conditioned medium was also chemotactic and mitogenic for these cells. The addition of suramin to C6 glioma conditioned medium prevents tube formation in collagen gels, and inhibits both endothelial cell proliferation and chemotaxis in a dose dependent manner. These results suggest that glial tumor cell conditioned medium induces angiongenesis in large vessel endothelial cells in vitro via mechanisms which are disrupted by suramin, most likely involving tumor-derived growth factor release and/or endothelium-mediated matrix proteolysis.  相似文献   

4.
The tandem PDZ domains of syntenin promote cell invasion   总被引:1,自引:0,他引:1  
Syntenin is a tandem PDZ protein that has recently been shown to be overexpressed in several cancer cells and tissues, and that might play an active role in tumor cell invasion and metastasis. Here we show that overexpression of the tandem PDZ domains of syntenin in non-invasive cells is necessary and sufficient to stimulate these cells to invade a collagen I matrix, and this effect can be regulated by ligand binding to the PDZ domains. Furthermore, we show that syntenin-induced invasion requires signaling through ras, rho and PI3K/MAPK signaling pathways and involves changes in cell-cell adhesion. Inversely, when we used RNA interference to inhibit syntenin expression in different invasive cancer cell lines, we observed a drastically decreased ability of these cells to migrate and invade into collagen type I or Matrigel. RNAi-treated cells also show increased cell aggregation, indicating that syntenin is important for cell-cell adhesion in epithelial cells. Together, these results suggest that downregulation of syntenin by RNA interference could provide a means of inhibiting tumor invasion and possibly metastasis in different cancers, and point to syntenin as a potential cancer biomarker and drug target.  相似文献   

5.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

6.
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.  相似文献   

7.
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the α2β1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

8.
Extracellular matrix microstructure and mechanics are crucial to breast cancer progression and invasion into surrounding tissues. The peritumor collagen network is often dense and aligned, features which in vitro models lack. Aspiration of collagen hydrogels led to densification and alignment of microstructure surrounding embedded cancer cells. Two metastasis-derived breast cancer cell lines, MDA-MB-231 and MCF-7, were cultured in initially 4 mg/ml collagen gels for 3 days after aspiration, as well as in unaspirated control hydrogels. Videomicroscopy during aspiration, and at 0, 1, and 3 days after aspiration, epifluorescence microscopy of phalloidin-stained F-actin cytoskeleton, histological sections, and soluble metabolic byproducts from constructs were collected to characterize effects on the embedded cell morphology, the collagen network microstructure, and proliferation. Breast cancer cells remained viable after aspiration-ejection, proliferating slightly less than in unaspirated gels. Furthermore, MDA-MB-231 cells appear to partially relax the collagen network and lose alignment 3 days after aspiration. Aspiration-ejection generated aligned, compact collagen network microstructure with immediate cell co-orientation and higher cell number density apparently through purely physical means, though cell-collagen contact guidance and network remodeling influence cell organization and collagen network microstructure during subsequent culture. This study establishes a platform to determine the effects of collagen density and alignment on cancer cell behavior, with translational potential for anticancer drug screening in a biomimetic three-dimensional matrix microenvironment, or implantation in preclinical models.  相似文献   

9.
3D Traction forces in cancer cell invasion   总被引:1,自引:0,他引:1  
Cell invasion through a dense three-dimensional (3D) matrix is believed to depend on the ability of cells to generate traction forces. To quantify the role of cell tractions during invasion in 3D, we present a technique to measure the elastic strain energy stored in the matrix due to traction-induced deformations. The matrix deformations around a cell were measured by tracking the 3D positions of fluorescent beads tightly embedded in the matrix. The bead positions served as nodes for a finite element tessellation. From the strain in each element and the known matrix elasticity, we computed the local strain energy in the matrix surrounding the cell. We applied the technique to measure the strain energy of highly invasive MDA-MB-231 breast carcinoma and A-125 lung carcinoma cells in collagen gels. The results were compared to the strain energy generated by non-invasive MCF-7 breast and A-549 lung carcinoma cells. In all cases, cells locally contracted the matrix. Invasive breast and lung carcinoma cells showed a significantly higher contractility compared to non-invasive cells. Higher contractility, however, was not universally associated with higher invasiveness. For instance, non-invasive A-431 vulva carcinoma cells were the most contractile cells among all cell lines tested. As a universal feature, however, we found that invasive cells assumed an elongated spindle-like morphology as opposed to a more spherical shape of non-invasive cells. Accordingly, the distribution of strain energy density around invasive cells followed patterns of increased complexity and anisotropy. These results suggest that not so much the magnitude of traction generation but their directionality is important for cancer cell invasion.  相似文献   

10.
Summary Little being known about factors necessary for insulin cell differentiation, we tested the chance observation that these cells were virtually absent from collagen gel cultures of embryonic avian pancreas in which the other pancreatic endocrine cells were numerous. Five-day dorsal buds stripped of their enveloping mesenchyme were embedded in gel and overlaid by a defined medium containing serum, then cultured for 7 days. Immunocytochemical evaluation showed a very low proportion of insulin cells. Substitution of the gel by a polyamino acid coating slightly increased the proportion. In an attempt to test for ability of insulin cell formation to recover, we transferred explants first cultured in collagen gel to polyamino-acid-coated dishes for a further 7 days. No improvement resulted. In controls grown for 14 days on a polyamino acid coating, insulin cells disappeared completely. We conclude that collagen gel does not support survival and differentiation of chick embryonic insulin cells and that the medium used is lacking in some essential factor(s). Determination of their identity should prove possible by exploitation of this model.  相似文献   

11.
During cancer cell growth many tumors exhibit various grades of desmoplasia, unorganized production of fibrous or connective tissue, composed mainly of collagen fibers and myofibroblasts. The accumulation of an extracellular matrix (ECM) surrounding tumors directly affects cancer cell proliferation, migration and spread; therefore the study of desmoplasia is of vital importance. Stromal fibroblasts surrounding tumors are activated to myofibroblasts and become the primary producers of ECM during desmoplasia. The composition, density and organization of this ECM accumulation play a major role on the influence desmoplasia has upon tumor cells. In this study, we analyzed desmoplasia in vivo in human colorectal carcinoma tissue, detecting an up-regulation of collagen I, collagen IV and collagen V in human colorectal cancer desmoplastic reaction. These components were then analyzed in vitro co-cultivating colorectal cancer cells (Caco-2 and HCT116) and fibroblasts utilizing various co-culture techniques. Our findings demonstrate that direct cell-cell contact between fibroblasts and colorectal cancer cells evokes an increase in ECM density, composed of unorganized collagens (I, III, IV and V) and proteoglycans (biglycan, fibromodulin, perlecan and versican). The desmoplastic collagen fibers were thick, with an altered orientation, as well as deposited as bundles. This increased ECM density inhibited the migration and invasion of the colorectal tumor cells in both 2D and 3D co-culture systems. Therefore this study sheds light on a possible restricting role desmoplasia could play in colorectal cancer invasion.  相似文献   

12.
It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.  相似文献   

13.
Regulation of cell migration/invasion is important for embryonic development, immune function, and angiogenesis. However, migratory cells must also coordinately activate survival mechanisms to invade the extracellular matrix and colonize foreign sites in the body. Although invasive cells activate protective programs to survive under diverse and sometimes hostile conditions, the molecular signals that regulate these processes are poorly understood. Evidence is provided that signals that induce cell invasion also promote cell survival by suppressing apoptosis of migratory cells. Extracellular-regulated kinase (ERK) activation and molecular coupling of the adaptor proteins p130 Crk-associated substrate (CAS) and c-CrkII (Crk) represent two distinct pathways that induce cell invasion and protect cells from apoptosis in a three-dimensional collagen matrix. CAS/Crk-mediated cell invasion and survival requires activation of the small GTPase Rac, whereas ERK-induced cell invasion, but not survival requires myosin light chain kinase activation and myosin light chain phosphorylation. Uncoupling CAS from Crk or inhibition of ERK activity prevents migration and induces apoptosis of invasive cells. These findings provide molecular evidence that during invasion of the extracellular matrix, cells coordinately regulate migration and survival mechanisms through ERK activation and CAS/Crk coupling.  相似文献   

14.
Evidence for a secreted chemorepellent that directs glioma cell invasion   总被引:2,自引:0,他引:2  
Secreted chemotropic cues guide the migration of neuronal and glial cell precursors during neural development. It is not known if chemotropism contributes to directing the invasion of brain tissue by glioma cells. A model system has been developed that allows quantification of invasive behavior using gliomas spheroids embedded in collagen gels. Here we provide evidence that glioma spheroids secrete a chemorepellent factor(s) that directs cells away from the spheroid and into the collagen matrix. The relationship between total invasion, cell number, and implantation distance suggests that glioma cells respond to a gradient of the chemorepellent cue(s) that is well established at 48 h. C6 astrocytoma cells normally invade the collagen at an angle perpendicular to the spheroid edge. In contrast, an adjacent spheroid causes cells to turn away from their normal trajectory and slow their rate of invasion. Astrocytoma cells are repelled by an adjacent glioma spheroid but rapidly infiltrate astrocyte aggregates, indicating that astrocytes do not express the repellent cue. Uniform concentrations of repellent factor(s) in spheroid conditioned medium overwhelm endogenous gradients and render glioma cells less able to exhibit this chemotropic response. Concentration gradients of spheroid conditioned medium in cell migration assays also demonstrate the chemorepellent cue(s)'s tropic effect. Our findings indicate that glioma spheroids produce a secreted diffusible cue(s) that promotes glioma cell invasion. Identification of this factor(s) may advance current therapies that aim to limit tumor cell invasion.  相似文献   

15.
Helicobacter pylori interacts with gastric epithelial cells, activating signaling pathways important for carcinogenesis. In this study we examined the role of H. pylori on cell invasion and the molecular mechanisms underlying this process. The relevance of H. pylori cag pathogenicity island-encoded type IV secretion system (T4SS), CagA, and VacA for cell invasion was also investigated. We found that H. pylori induces AGS cell invasion in collagen type I and in Matrigel invasion assays. H. pylori-induced cell invasion requires the direct contact between bacteria and cancer cells. H. pylori-mediated cell invasion was dependent on the activation of the c-Met receptor and on increased MMP-2 and MMP-9 activity. The abrogation of the c-Met receptor using the specific NK4 inhibitor or the silencing of c-Met expression with small interference RNA suppressed both cell invasion and MMP activity. Studies with different H. pylori strains revealed that cell invasion, c-Met tyrosine phosphorylation, and increased MMP-2 and MMP-9 activity were all dependent on the presence of a functional bacterial T4SS, but not on VacA cytotoxicity. Our findings demonstrate that H. pylori strains with a functional T4SS stimulate gastric epithelial cell invasion through a c-Met-dependent signaling pathway that comprises an increase in MMP-2 and MMP-9 activity.  相似文献   

16.
Interaction between tumor cells and stromal fibroblasts plays essential roles in tumor progression. However, its detailed molecular mechanism remains unclear. To understand the mechanism, we investigated molecules mediating this interaction using the three-dimensional (3D) co-culture system of Panc-1 pancreatic carcinoma cells with normal fibroblasts. When the two kinds of cells were placed on the top of collagen gel, the tumor cells scattered into the fibroblast layer, apparently undergoing epithelial‐mesenchymal transition. When fibroblasts were placed within collagen gel, Panc-1 cells actively invaded into the collagen gel, extending a microtubule-based long protrusion. Although transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) individually stimulated the tumor cell invasion into collagen gel without fibroblasts, TGF-β signaling inhibitors (SB431542 and LY2157299) significantly enhanced the Panc-1 cell invasion in the 3D co-culture with fibroblasts. Experiments with HGF/Met signaling inhibitors or with the fibroblast conditioned medium revealed that HGF was a major invasion-promoting factor secreted from fibroblasts and SB431542 increased the HGF secretion by blocking the HGF-suppressing activity of cancer cell-derived TGF-β. These results indicate that HGF and TGF-β are critical regulators for both tumor–stroma interaction and tumor invasion. The results also suggest that TGF-β signaling inhibitors may promote tumor progression under some pathological conditions.  相似文献   

17.
Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 μm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis.  相似文献   

18.
The pleiotropic effects of Calloselasma rhodostoma venom is caused by various toxins, among them kistrin and ancrod, which block platelet activation triggered by RGD-dependent integrins and the blood clotting cascade, respectively. Here, we demonstrate that rhodocetin, another component of this venom, acts as alpha2beta1 integrin inhibiting disintegrin and antagonizes important cellular responses to type I collagen. Cell adhesion, migration, and collagen lattice contraction in vitro were specifically inhibited by rhodocetin, whereas expression of collagen-degrading matrix metalloproteases was differently modulated. Moreover, cell invasion of HT1080 fibrosarcoma cells into a type I collagen matrix, but not into a fibrin gel or a basement membrane-extracted matrigel was efficiently blocked by rhodocetin. Unlike its natural ligand collagen, rhodocetin failed to cluster alpha2beta1 integrin, despite similar binding affinities. Hence, in the absence of focal adhesions cells do not attach firmly to rhodocetin and do not respond with any of alpha2beta1-triggered cell reactions, except for MMP-1 production. Therefore, this disintegrin may be a valuable tool to specifically target stromal tumor invasion and to manipulate other alpha2beta1 integrin-mediated functions, such as excessive scar contraction and fibrosis. Rhodocetin might be therapeutically useful because of its lack of interference with RGD-dependent integrins, low molecular mass, high solubility, and biochemical stability.  相似文献   

19.
The invasion of neoplastic cells into healthy brain tissue is a pathologic hallmark of gliomas and contributes to the failure of current therapeutic modalities (surgery, radiation and chemotherapy). Transformed glial cells share the common attributes of the invasion process, including cell adhesion to extracellular matrix (ECM) components, cell locomotion, and the ability to remodel extracellular space. However, glioma cells have the ability to invade as single cells through the unique environment of the normal central nervous system (CNS). The brain parenchyma has a unique composition, mainly hyaluronan and is devoid of rigid protein barriers composed of collagen, fibronectin and laminin. The integrins and the hyaluronan receptor CD44 are specific adhesion receptors active in glioma-ECM adhesion. These adhesion molecules play a major role in glioma cell-matrix interactions because the neoplastic cells use these receptors to adhere to and migrate along the components of the brain ECM. They also interact with the proteases secreted during glioma progression that degrade ECM allowing tumor cells to spread and diffusely infiltrate the brain parenchyma. The plasminogen activators (PAs), matrix metalloproteinases (MMPs) and lysosomal cysteine peptidases called cathepsins are also induced during the invasive process. Understanding the mechanisms of tumor cell invasion is critical as it plays a central role in glioma progression and failure of current treatment due to tumor recurrence from micro-disseminated disease. This review will focus on the impact of microregional heterogeneity of the ECM on glioma invasion in the normal adult brain and its modifications in tumoral brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号