首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the function of Hansenula polymorpha Pex14p in selective peroxisome degradation. Previously, we showed that Pex14p was involved in peroxisome biogenesis and functions in peroxisome matrix protein import. Evidence for the additional function of HpPex14p in selective peroxisome degradation (pexophagy) came from cells defective in HpPex14p synthesis. The suggestion that the absence of HpPex14p interfered with pexophagy was further analyzed by mutational analysis. These studies indicated that deletions at the C terminus of up to 124 amino acids of HpPex14p did not affect peroxisome degradation. Conversely, short deletions of the N terminus (31 and 64 amino acids, respectively) of the protein fully impaired pexophagy. Peroxisomes present in these cells remained intact for at least 6 h of incubation in the presence of excess glucose, conditions that led to the rapid turnover of the organelles in wild-type control cells. We conclude that the N terminus of HpPex14p contains essential information to control pexophagy in H. polymorpha and thus, that organelle development and turnover converge at Pex14p.  相似文献   

2.
DegP is a periplasmic protease that is a member of both the sigma(E) and Cpx extracytoplasmic stress regulons of Escherichia coli and is essential for viability at temperatures above 42 degrees C. [U-(14)C]acetate labeling experiments demonstrated that phospholipids were degraded in degP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, beta-lactamase, and beta-galactosidase assays as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that large amounts of cellular proteins are released from degP cells at the nonpermissive temperature. A mutation in pldA, which encodes outer membrane phospholipase A (OMPLA), was found to rescue degP cells from the temperature-sensitive phenotype. pldA degP mutants had a normal plating efficiency at 42 degrees C, displayed increased viability at 44 degrees C, showed no degradation of phospholipids, and released far lower amounts of cellular protein to culture supernatants. degP and pldA degP mutants containing chromosomal lacZ fusions to Cpx and sigma(E) regulon promoters indicated that both regulons were activated in the pldA mutants. The overexpression of the envelope lipoprotein, NlpE, which induces the Cpx regulon, was also found to suppress the temperature-sensitive phenotype of degP mutants but did not prevent the degradation of phospholipids. These results suggest that the absence of OMPLA corrects the degP temperature-sensitive phenotype by inducing the Cpx and sigma(E) regulons rather than by inactivating the phospholipase per se.  相似文献   

3.
Radioresistance of E. coli cells is slightly increased (dose modification factor (DMF) = 1.2) with temperature elevated from 4 degrees to 43 degrees C at the time of gamma-irradiation. However, an appreciable effect of the thermoinduced radioresistance (DMF = 1.7) was observed when the wild-type cells were exposed to gamma-radiation at 15-43 degrees C (but not at 4 degrees C) after 30-min preincubation at 43 degrees C. This effect was absent in htpR mutants, defective in induction of heat shock proteins, and coupled with the decreased post-irradiation DNA degradation in gamma-irradiated htpR+ cells. It is suggested that heat shock proteins are involved in the thermoinduced radioresistance.  相似文献   

4.
We have identified two temperature-sensitive peroxisome-deficient mutants of Hansenula polymorpha (ts6 and ts44) within a collection of ts mutants which are impaired for growth on methanol at 43 degrees C but grow well at 35 degrees C. In both strains peroxisomes were completely absent in cells grown at 43 degrees C; the major peroxisomal matrix enzymes alcohol oxidase, dihydroxyacetone synthase and catalase were synthesized normally but assembled into the active enzyme protein in the cytosol. As in wild-type cells, these enzymes were present in peroxisomes under permissive growth conditions (< or = 37 degrees C). However, at intermediate temperatures (38-42 degrees C) they were partly peroxisome-bound and partly resided in the cytosol. Genetic analysis revealed that both mutant phenotypes were due to monogenic recessive mutations mapped in the same gene, designated PER13. After a shift of per13-6ts cells from restrictive to permissive temperature, new peroxisomes were formed within 1 h. Initially one--or infrequently a few--small organelles developed which subsequently increased in size and multiplied by fission during prolonged permissive growth. Neither mature peroxisomal matrix nor membrane proteins, which were present in the cytosol prior to the temperature shift, were incorporated into the newly formed organelles. Instead, these proteins remained unaffected (and active) in the cytosol concomitant with further peroxisome development. Thus in H.polymorpha alternative mechanisms of peroxisome biogenesis may be possible in addition to multiplication by fission upon induction of the organelles by certain growth substrates.  相似文献   

5.
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisome degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14p(Pi)) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14p(Pi) in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly, because Pex14p is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

6.
Two types of Escherichia coli mutants tolerant to beta-lactam antibiotics were isolated. One is E. coli chi2452, which showed a tolerant response against beta-lactam antibiotics when grown at 42 degrees C, and the others are the mutants C-80 and C-254, selected from mutagenized E. coli chi1776 by cycles of exposure to ampicillin, cephaloridine, and starvation of the nutritionally required diaminopimelic acid. Beta-lactam antibiotics caused rapid loss of viability and lysis in cultures of chi1776 or in chi2452 grown at 32 degrees C. In contrast, the same antibiotics caused only a reversible inhibition of growth in mutants C-80 and C-254 or in cultures of chi2452 grown at 42 degrees C. Beta-lactam antibiotics that show high affinity for penicillin-binding proteins 2 or 3 (mecillinam and cephalexin, respectively) induced similar morphological effects (ovoid cell formation and filament formation) in both parent and mutant strains. In contrast, beta-lactam antibiotics which have a high affinity for penicillin-binding protein 1 (e.g., cephaloridine or cefoxitin), which cause rapid lysis in the parental strains, caused cell elongation in the tolerant bacteria. In contrast to the parental cells, autolytic cell wall degradation was not triggered by beta-lactam treatment of chi2452 cells grown at 42 degrees C or in mutants C-80 and C-254. The total autolytic activity of mutants C-80 and C-254 was less than 30% that of the parent strain. However, virtually identical autolytic activities were found in cells of chi2452 grown either at 42 or 32 degrees C. Possible mechanisms for the penicillin tolerance of E. coli are considered on the basis of these findings.  相似文献   

7.
《Autophagy》2013,9(3):183-188
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisomal degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14pPi) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14pPi in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly and is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

8.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

9.
Escherichia coli ppGpp synthetase II activity requires spoT   总被引:21,自引:0,他引:21  
Escherichia coli has two enzymes catalyzing the synthesis of guanosine tetraphosphate (ppGpp), designated ppGpp synthetase I (PSI = RelA) and II (PSII), whose activities are regulated differently. Until now, the gene for PSII had not been identified. Here, an E. coli relA1 strain that expresses lacZ from an rrnB P1 promoter was used to screen mutants with increased beta-galactosidase activity on 5-bromo-4-chloro-3-indoyl beta-D-galactoside indicator plates at 30 degrees C. About 15% of the mutants obtained in this manner had reduced levels of ppGpp at 30 degrees C and no detectable ppGpp at 43 degrees C. These mutants did not form colonies at 42 degrees C on minimal medium plates and had elevated ribosome concentrations and higher growth rates at 30 degrees C. Genetic mapping by phage P1 transduction and complementation analyses showed that the mutations were located in spoT and that they were recessive. Specific inhibition of SpoT-dependent ppGpp degradation activity with picolinic acid showed that two of the mutants tested were deficient in ppGpp synthesis activity. These results indicate that spoT is required for PSII activity, suggesting that spoT encodes both ppGpp degradation and synthesis activities and that these two functions can be affected independently by mutation.  相似文献   

10.
Varicella-zoster virus (VZV) open reading frame 17 (ORF17) is homologous to herpes simplex virus (HSV) UL41, which encodes the viral host shutoff protein (vhs). HSV vhs induces degradation of mRNA and rapid shutoff of host protein synthesis. An antibody to ORF17 protein detected a 46-kDa protein in VZV-infected cells. While HSV vhs is located in virions, VZV ORF17 protein was not detectable in virions. ORF17 protein induced RNA cleavage, but to a substantially lesser extent than HSV-1 vhs. Expression of ORF17 protein did not inhibit expression from a beta-galactosidase reporter plasmid, while HSV type 1 vhs abolished reporter expression. Two VZV ORF17 deletion mutants were constructed to examine the role of ORF17 in virus replication. While the ORF17 VZV mutants grew to peak titers that were similar to those of the parental virus at 33 degrees C, the ORF17 mutants grew to 20- to 35-fold-lower titers than parental virus at 37 degrees C. ORF62 protein was distributed in a different pattern in the nuclei and cytoplasm of cells infected with an ORF17 deletion mutant at 37 degrees C compared to 33 degrees C. Inoculation of cotton rats with the ORF17 deletion mutant resulted in a level of latent infection similar to that produced by inoculation with the parental virus. The importance of ORF17 protein for viral replication at 37 degrees C but not at 33 degrees C suggests that this protein may facilitate the growth of virus in certain tissues in vivo.  相似文献   

11.
12.
In the methylotrophic yeast Hansenula polymorpha non-selective autophagy, induced by nitrogen starvation, results in the turnover of cytoplasmic components, including peroxisomes. We show that the uptake of these components occurs by invagination of the vacuolar membrane without their prior sequestration and thus differs from the mechanism described for bakers yeast. A selective mode of autophagy in H. polymorpha, namely glucose-induced peroxisome degradation, involves sequestration of individual peroxisomes tagged for degradation by membrane layers that subsequently fuse with the vacuole where the organelle is digested. H. polymorpha pdd mutants are blocked in selective peroxisome degradation. We observed that pdd1-201 is also impaired in non-selective autophagy, whereas this process still normally functions in pdd2-4. These findings suggest that mechanistically distinct processes as selective and non-selective autophagy involve common but also unique genes.  相似文献   

13.
14.
After exposure of cells of the methylotrophic yeast Hansenula polymorpha HF246 leu1-1 to N-nitro-N-nitrosoguanidine, a collection of 227 mutants unable to grow on methanol at elevated temperature (45 degrees C) was obtained. Ninety four ts mutants (35% of the total number of mutants), which were unable to grow on methanol only at 45 degrees C but could grow at optimal temperature (37 degrees C), were isolated. Complementation analysis of mutants using 12 deletion mutants for genes of peroxisome biogenesis (PEX) (available in this yeast species by the beginning of our work) allowed to assign 51 mutants (including 16 ts) to the separate group of mutants unable to complement deletion mutants with defects in eight PEX genes. These mutants were classified into three groups: group 1 contained 10 pex10 mutants (4 ts mutants among them); group 2 included 19 mutants that failed to complement other pex testers: 1 pex1; 2 pex4 (1 ts); 6 pex5 (5 ts); 3 pex8; 6 (3ts)- pex19; group 3 contained 22 "multiple" mutants. In mutants of group 3, hybrids with several testers do not grow on methanol. All mutants (51) carried recessive mutations, except for mutant 108, in which the mutation was dominant only at 30 degrees C, which suggests that it is ts-dominant. Recombination analysis of mutants belonging to group 2 revealed that only five mutants (two pex5 and three pex8) carried mutations for the corresponding PEX genes. The remaining 14 mutants yielded methanol-utilizing segregants in an arbitrarily chosen sample of hybrids with the pex tester, which indicates mutation location in other genes. In 19 mutants, random analysis of ascospores from hybrids obtained upon crossing mutants of group 3 with a strain lacking peroxisomal disorders (ade11) revealed a single mutation causing the appearance of a multiple phenotype. A more detailed study of two mutants from this group allowed the localization of this mutation in the only PEX gene (PEX or PEX2). The revealed disorder of complementation interactions between nonallelic genes is under debate.  相似文献   

15.
The intracellular sorting of EGF-receptor complexes (EGF-RC) has been studied in human epidermoid carcinoma A431 cells. Recycling of EGF was found to occur rapidly after internalization at 37 degrees C. The initial rate of EGF recycling was reduced at 18 degrees C. A significant pool of internalized EGF was incapable of recycling at 18 degrees C but began to recycle when cells were warmed to 37 degrees C. The relative rate of EGF outflow at 37 degrees C from cells exposed to an 18 degrees C temperature block was slower (t1/2 approximately 20 min) than the rate from cells not exposed to a temperature block (t1/2 approximately 5-7 min). These data suggest that there might be both short- and long-time cycles of EGF recycling in A431 cells. Examination of the intracellular EGF-RC dissociation and dynamics of short- and long-time recycling indicated that EGF recycled as EGF-RC. Moreover, EGF receptors that were covalently labeled with a photoactivatable derivative of 125I-EGF recycled via the long-time pathway at a rate similar to that of 125I-EGF. Since EGF-RC degradation was also blocked at 18 degrees C, we propose that sorting to the lysosomal and long-time recycling pathway may occur after a highly temperature-sensitive step, presumably in the late endosomes.  相似文献   

16.
We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.  相似文献   

17.
In order to determine the functional roles of amino acid residues in gp18 (gp: gene product), the contractile tail sheath protein of bacteriophage T4, the mutation sites and amino acid replacements of available and newly created missense mutants with distinct phenotypes were determined. Amber mutants were also utilized for amino acid insertion by host amber suppressor cell strains. It was found that mutants that gave rise to a particular phenotype were mapped in a particular region along the polypeptide chain. Namely, all amino acid replacements in the cold-sensitive mutants (cs, which grows at 37 degrees C, but not at 25 degrees C) and the heat-sensitive mutant (hs, lose viability by incubation at 55 degrees C for 30 min) except for one hs mutant were mapped in a limited region in the C-terminal domain. On the other hand, all the temperature-sensitive mutants (ts, grow at 30 degrees C, but not at 42 degrees C) and carbowax mutants (CBW, can adsorb to the host bacterium in the presence of high concentrations of polyethylene glycol, where wild-type phage cannot) were mapped in the N-terminal protease-resistant domain, except for one ts mutant. The results suggested that the C-terminal region of gp18 is important for contraction and assembly, whereas the N-terminal protease-resistant domain constitutes the protruding part of the tail sheath.  相似文献   

18.
19.
Replication arrests due to the lack or the inhibition of replicative helicases are processed by recombination proteins. Consequently, cells deficient in the Rep helicase, in which replication pauses are frequent, require the RecBCD recombination complex for growth. rep recA mutants are viable and display no growth defect at 37 or 42 degrees C. The putative role of chaperone proteins in rep and rep recA mutants was investigated by testing the effects of dnaK mutations. dnaK756 and dnaK306 mutations, which allow growth of otherwise wild-type Escherichia coli cells at 40 degrees C, are lethal in rep recA mutants at this temperature. Furthermore, they affect the growth of rep mutants, and to a lesser extent, that of recA mutants. We conclude that both rep and recA mutants require DnaK for optimal growth, leading to low viability of the triple (rep recA dnaK) mutant. rep recA mutant cells form colonies at low efficiency when grown to exponential phase at 30 degrees C. Although the plating defect is not observed at a high temperature, it is not suppressed by overexpression of heat shock proteins at 30 degrees C. The plating defect of rep recA mutant cells is suppressed by the presence of catalase in the plates. The cryosensitivity of rep recA mutants therefore results from an increased sensitivity to oxidative damage upon propagation at low temperatures.  相似文献   

20.
Ricin is a heterodimeric plant protein that is potently toxic to mammalian cells. Toxicity results from the catalytic depurination of eukaryotic ribosomes by ricin toxin A chain (RTA) that follows toxin endocytosis to, and translocation across, the endoplasmic reticulum membrane. To ultimately identify proteins required for these later steps in the entry process, it will be useful to express the catalytic subunit within the endoplasmic reticulum of yeast cells in a manner that initially permits cell growth. A subsequent switch in conditions to provoke innate toxin action would permit only those strains containing defects in genes normally essential for toxin retro-translocation, refolding or degradation to survive. As a route to such a screen, several RTA mutants with reduced catalytic activity have previously been isolated. Here we report the use of Saccharomyces cerevisiae to isolate temperature-dependent mutants of endoplasmic reticulum-targeted RTA. Two such toxin mutants with opposing phenotypes were isolated. One mutant RTA (RTAF108L/L151P) allowed the yeast cells that express it to grow at 37 degrees C, whereas the same cells did not grow at 23 degrees C. Both mutations were required for temperature-dependent growth. The second toxin mutant (RTAE177D) allowed cells to grow at 23 degrees C but not at 37 degrees C. Interestingly, RTAE177D has been previously reported to have reduced catalytic activity, but this is the first demonstration of a temperature-sensitive phenotype. To provide a more detailed characterization of these mutants we have investigated their N-glycosylation, stability, catalytic activity and, where appropriate, a three-dimensional structure. The potential utility of these mutants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号