首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
2.
Food-web structure mediates dramatic effects of biodiversity loss including secondary and `cascading' extinctions. We studied these effects by simulating primary species loss in 16 food webs from terrestrial and aquatic ecosystems and measuring robustness in terms of the secondary extinctions that followed. As observed in other networks, food webs are more robust to random removal of species than to selective removal of species with the most trophic links to other species. More surprisingly, robustness increases with food-web connectance but appears independent of species richness and omnivory. In particular, food webs experience `rivet-like' thresholds past which they display extreme sensitivity to removal of highly connected species. Higher connectance delays the onset of this threshold. Removing species with few trophic connections generally has little effect though there are several striking exceptions. These findings emphasize how the number of species removed affects ecosystems differently depending on the trophic functions of species removed.  相似文献   

3.
A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.  相似文献   

4.
How the complexity of food webs relates to stability has been a subject of many studies. Often, unweighted connectance is used to express complexity. Unweighted connectance is measured as the proportion of realized links in the network. Weighted connectance, on the other hand, takes link weights (fluxes or feeding rates) into account and captures the shape of the flux distribution. Here, we used weighted connectance to revisit the relation between complexity and stability. We used 15 real soil food webs and determined the feeding rates and the interaction strength matrices. We calculated both versions of connectance, and related these structural properties to food web stability. We also determined the skewness of both flux and interaction strength distributions with the Gini coefficient. We found no relation between unweighted connectance and food web stability, but weighted connectance was positively correlated with stability. This finding challenges the notion that complexity may constrain stability, and supports the ‘complexity begets stability’ notion. The positive correlation between weighted connectance and stability implies that the more evenly flux rates were distributed over links, the more stable the webs were. This was confirmed by the Gini coefficients of both fluxes and interaction strengths. However, the most even distributions of this dataset still were strongly skewed towards small fluxes or weak interaction strengths. Thus, incorporating these distribution with many weak links via weighted instead of unweighted food web measures can shed new light on classical theories.  相似文献   

5.
Using a bioenergetic model we show that the pattern of foraging preferences greatly determines the complexity of the resulting food webs. By complexity we refer to the degree of richness of food-web architecture, measured in terms of some topological indicators (number of persistent species and links, connectance, link density, number of trophic levels, and frequency of weak links). The poorest food-web architecture is found for a mean-field scenario where all foraging preferences are assumed to be the same. Richer food webs appear when foraging preferences depend on the trophic position of species. Food-web complexity increases with the number of basal species. We also find a strong correlation between the complexity of a trophic module and the complexity of entire food webs with the same pattern of foraging preferences.  相似文献   

6.
水生生态系统食物网复杂性与多样性的关系   总被引:1,自引:0,他引:1  
李晓晓  杨薇  孙涛  崔保山  邵冬冬 《生态学报》2021,41(10):3856-3864
探索食物网的复杂结构是生态学的中心问题之一。基于构建的黄河口海草床食物网并耦合实际食物网的数据集,整理了包含河口、湖泊、海洋和河流四种水生生态系统类型的48个实际食物网案例。以食物网的节点数反映食物网多样性,物种之间的营养链接数、链接密度和连通度来表示食物网的复杂性,采用营养缩尺模型描述水生生态系统食物网的复杂性特征与节点数的普适性规律。结果表明:所涉及的48个水生生态系统食物网的多样性和复杂性跨度较大,其中,节点数的分布范围为4-124,链接数为3-1830,链接密度为0.75-15.71,连通度为0.06-0.25。不同类型水生生态系统间的连通度存在显著性差异(P=0.01),节点数、链接数、链接密度不存在显著性差异。各类型生态系统的食物网链接数、链接密度均随节点数的增加而增加(R2=0.92,P<0.001和R2=0.82,P<0.001)。湖泊生态系统的连通度随节点数的变化不明显,围绕在0.20附近;而其他3种类型生态系统的食物网连通度随节点数的增加而降低(R2=0.06-0.41,P<0.001)。对全球尺度的水生食物网多样性和复杂性的定量化研究对于提升对食物网的复杂结构的科学认识,从系统尺度探究多样性和复杂性的关系提供数据支撑。  相似文献   

7.
We determined major structural properties influencing the food webs of two sandy beaches with contrasting morphodynamics in the Atlantic coast of Uruguay: reflective (narrow and steep) and dissipative beaches (wide and flat). Furthermore, we evaluated how these characteristics could influence the stability of the local food webs. To this end, we examined the correlation of several food web properties with different ecosystem types (including freshwater habitats, estuary, marine, and terrestrial environments) using a principal components analysis. Sandy beach food web components included detritus, phytoplankton, zooplankton, benthic invertebrates, fishes, and seabirds. Our results revealed that the dissipative beach presented higher trophic levels, a higher number of trophic species, more links per species, as well as a higher proportion of intermediate trophic species, but lower connectance and proportion of omnivorous species than the reflective beach. The variation in the food web properties was explained by two principal components. Sandy beach food webs contribute mainly to one dimension of the principal components analysis that was determined by the number of trophic species, links per species, the trophic similarity, and the characteristic path length. We suggest that species and link characteristics, such as predominance of scavengers and detritivorous, the relatively high connectance and the short path length are drivers in the food web structure and may play a role in the community dynamic.  相似文献   

8.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

9.
Coll M  Schmidt A  Romanuk T  Lotze HK 《PloS one》2011,6(7):e22591
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results.  相似文献   

10.
The structure of food webs along river networks   总被引:1,自引:0,他引:1  
Do changes in the species composition of riverine fish assemblages along river networks lead to predictable changes in food‐web structure? We assembled empirical “fish‐centered” river food webs for three rivers located along a latitudinal gradient in the South Saskatchewan River Basin (SSRB) that differ in land‐use impacts and geomorphology but flow through similar mountain, foothill, and prairie physiographic regions. We then calculated 17 food‐web properties to determine whether the nine river food webs differed according to physiographic region or river sub‐basin. There were no statistically significant differences in the 17 food‐web properties calculated among the rivers. In contrast, fish species richness, connectance, the proportion of herbivores, and the proportion of cannibals changed longitudinally along the river network. Our results suggest that regional changes in river geomorphology and physicochemistry play an important role in determining longitudinal variation in food‐web properties such as fish species richness and connectance. In contrast, the overall structure of river food webs may be relatively similar and insensitive to regional influences such as zoogeography. Further explorations of river and other food webs would greatly illuminate this suggestion.  相似文献   

11.
Parasites have the capacity to regulate host populations and may be important determinants of community structure, yet they are usually neglected in studies of food webs. Parasites can provide much of the information on host biology, such as diet and migration, that is necessary to construct accurate webs. Because many parasites have complex life cycles that involve several different hosts, and often depend on trophic interactions for transmission, parasites provide complementary views of web structure and dynamics. Incorporation of parasites in food webs can substantially after baste web properties, Including connectance, chain length and proportions of top and basal species, and can allow the testing of specific hypotheses related to food-web dynamics.  相似文献   

12.
Abstract This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second‐order stream located in the south‐east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus‐based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.  相似文献   

13.
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.  相似文献   

14.
A set of rules is formulated which expresses the random assembly of ecological communities by sequentially arriving species, subject to energetic constraints. It is shown that these “assembled communities” provide a reasonable model for 35 out of the 40 real food webs recently compiled by Briand (1981), on the basis of the statistics: species richness, proportion of herbivores, ratio of prey to predators, proportion of dietary specialists, number of trophic links, number of potential competitive links, connectance, and average maximal food chain length. However, the observed frequency of intervality among Briand's food webs deviates significantly from the value expected on the basis of random sampling from the mathematical universe of assembled webs. Finally, there are indications in this work that the process of community genesis may be fundamentally different in fluctuating and in constant environments.  相似文献   

15.
Connectance and parasite diet breadth in flea-mammal webs   总被引:1,自引:0,他引:1  
The number of links in webs of species interactions, which lies at the heart of the biodiversity-stability debate, has given rise to controversy during the last 20 yr. Studies exploring these web properties have mainly focused on symmetric webs where each species can potentially feed on any other species; asymmetric webs such as host-parasite webs, where one set of species feed on another set of species, have been overlooked. However, food webs are incomplete without parasites and the study of parasite-host sub-web properties deserves attention. Here, using a large database involving 33 regional interaction webs between mammals and their flea parasites, we found a negative relationship between species richness and host-parasite connectance. We suggest that some phylogenetic constraints on flea diet may explain our observed patterns because we found that parasite diet breadth, measured as host taxonomic diversity, was invariant along our host richness gradient. We found that the slope of the logarithmic relationship between the number of realized links and species richness is lower than slope values reported for food webs. We suggest that connectance may not respond to increasing species richness as rapidly in host-parasite webs as in predator-prey food webs due to stronger coevolutionary requirements.  相似文献   

16.
Species loss in ecosystems can lead to secondary extinctions as a result of consumer–resource relationships and other species interactions. We compare levels of secondary extinctions in communities generated by four structural food-web models and a fifth null model in response to sequential primary species removals. We focus on various aspects of food-web structural integrity including robustness, community collapse and threshold periods, and how these features relate to assumptions underlying different models, different species loss sequences and simple measures of diversity and complexity. Hierarchical feeding, a fundamental characteristic of food-web structure, appears to impose a cost in terms of robustness and other aspects of structural integrity. However, exponential-type link distributions, also characteristic of more realistic models, generally confer greater structural robustness than the less skewed link distributions of less realistic models. In most cases for the more realistic models, increased robustness and decreased levels of web collapse are associated with increased diversity, measured as species richness S, and increased complexity, measured as connectance C. These and other results, including a surprising sensitivity of more realistic model food webs to loss of species with few links to other species, are compared with prior work based on empirical food-web data.  相似文献   

17.
Food web response to species loss has been investigated in several ways in the previous years. In binary food webs, species go secondarily extinct if no resource item remains to be exploited. In this work, we considered that species can go extinct before the complete loss of their resources and we introduced thresholds of minimum energy requirement for species survival. According to this approach, extinction of a node occurs whenever an initial extinction event eliminates its incoming links so it is left with an overall energy intake lower than the threshold value. We tested the robustness of 18 real food webs by removing species from most to least connected and considering different scenarios defined by increasing the extinction threshold. Increasing energy requirement threshold negatively affects food web robustness. We found that a very small increase of the energy requirement substantially increases system fragility. In addition, above a certain value of energy requirement threshold we found no relationship between the robustness and the connectance of the web. Further, food webs with more species showed higher fragility with increasing energy threshold. This suggests that the shape of the robustness–complexity relationship of a food web depends on the sensitivity of consumers to loss of prey.  相似文献   

18.
Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.  相似文献   

19.
Jeremy W. Fox 《Oikos》2006,115(1):97-109
Topological food webs illustrating “who eats whom” in different systems exhibit similar, non‐random, structures suggesting that general rules govern food web structure. Current food web models correctly predict many measures of food web topology from knowledge of species richness and connectance (fraction of possible predator–prey links that actually occur), together with assumptions about the ecological rules governing “who eats whom”. However, current measures are relatively insensitive to small changes in topology. Improvement of, and discrimination among, current models requires development of new measures of food web structure. Here I examine whether current food web models (cascade, niche, and nested hierarchy models, plus a random null model) can predict a new measure of food web structure, structural stability. Structural stability complements other measures of food web topology because it is sensitive to changes in topology that other measures often miss. The cascade and null models respectively over‐ and underpredict structural stability for a set of 17 high‐quality food webs. While the niche and nested hierarchy models provide unbiased predictions on average, their 95% confidence intervals frequently fail to include the observed data. Observed structural stabilities for all models are overdispersed compared to model predictions, and predicted and observed structural stabilities are uncorrelated, indicating that important sources of variation in structural stability are not captured by the models. Crucially, poor model performance arises because observed variation in structural stability is unrelated to variation in species richness and connectance. In contrast, almost all other measures of food web topology vary with species richness and connectance in natural webs. No model that takes species richness and connectance as the only input parameters can reproduce observed variation in structural stability. Further progress in predicting and explaining food web topology will require fundamentally new models based on different input parameters.  相似文献   

20.
We constructed the food webs of six Mediterranean streams in order to determine ecological generalities derived from analysis of their structure and to explore stabilizing forces within these ecosystems. Fish, macroinvertebrates, primary producers and detritus are the components of the studied food webs. Analysis focused on a suite of food web properties that describe species’ trophic habits, linkage complexity and food chains. A great structural similarity was found in analyzed food webs; we therefore suggest average values for the structural properties of Mediterranean stream food webs. Percentage of omnivorous species was positively correlated with connectance, and there was a predominance of intermediate trophic level species that had established simple links with detritus. In short, our results suggest that omnivory and the weak interactions of detritivores have a stabilizing role in these food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号